Neutron Stars are among the most exotic objects in the Universe. A neutron star, with a mass of 1.4-2 Solar masses within a radius of about 10-15 km, is the most compact stable configuration of matter in which degeneracy pressure can still balance gravity, since further compression would lead to gravitational collapse and formation of a black hole. As gravity is extreme, rotation is extreme: neutron stars are the fastest rotating stars known, with periods as short as a millisecond. The presence of a magnetic field not aligned with the rotation axis of the star is the origin of pulsating emission from these sources, which for this reason are dubbed pulsars. The discovery in 1998 of the first Accreting Millisecond X-ray Pulsar, started an exciting season of continuing discoveries. In the last 20 years, thanks to the extraordinary performance of astronomical detectors in the radio, optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond-spinning Pulsar. In this chapter we review the general properties of Accreting Millisecond X-ray Pulsars, which provide the first evidence that neutron stars are spun up to millisecond periods by accretion of matter and angular momentum from a (low-mass) companion star. We describe the general characteristics of this class of systems with particular attention to their spin and orbital parameters, their short-term and long-term evolution, as well as the information that can be drawn from their X-ray spectra.