Investigating Heavy-flavor vs Light-flavor Puzzle with Event Topology and Multiplicity in Proton+Proton Collisions at $sqrt{s}$ = 13 TeV using PYTHIA8


Abstract in English

Heavy-flavored hadrons are unique probes to study the properties of hot and dense QCD medium produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. Transverse spherocity is one of the event-topology variables used to separate jetty and isotropic events from the pool of event samples. This study aims to understand the production dynamics of heavy-flavors through the transverse momentum spectra, double differential yield and mean transverse momentum of J/$psi$, $rm D^{0}$ and $Lambda_{c}^{+}$ as a function of charged-particle multiplicity and transverse spherocity. Further to investigate the possibility of hardonization of the charm quarks, transverse spherocity dependence ratios like $Lambda_{c}^{+}$/$rm D^{0}$ and $Lambda^{0}$/$K^{-}$ are studied. For the current analysis, the events are generated by using 4C tuned PYTHIA8 for pp at $sqrt{s}$ = 13 TeV, which is quite successful in explaining the heavy-flavor particle production at the LHC energies.

Download