No Arabic abstract
In nature and human societies, the effects of homogeneous and heterogeneous characteristics on the evolution of collective behaviors are quite different from each other. It is of great importance to understand the underlying mechanisms of the occurrence of such differences. By incorporating pair pattern strategies and reference point strategies into an agent-based model, we have investigated the coupled effects of heterogeneous investment strategies and heterogeneous risk tolerance on price fluctuations. In the market flooded with the investors with homogeneous investment strategies or homogeneous risk tolerance, large price fluctuations are easy to occur. In the market flooded with the investors with heterogeneous investment strategies or heterogeneous risk tolerance, the price fluctuations are suppressed. For a heterogeneous population, the coexistence of investors with pair pattern strategies and reference point strategies causes the price to have a slow fluctuation around a typical equilibrium point and both a large price fluctuation and a no-trading state are avoided, in which the pair pattern strategies push the system far away from the equilibrium while the reference point strategies pull the system back to the equilibrium. A theoretical analysis indicates that the evolutionary dynamics in the present model is governed by the competition between different strategies. The strategy that causes large price fluctuations loses more while the strategy that pulls the system back to the equilibrium gains more. Overfrequent trading does harm to ones pursuit for more wealth.
We consider a random financial network with a large number of agents. The agents connect through credit instruments borrowed from each other or through direct lending, and these create the liabilities. The settlement of the debts of various agents at the end of the contract period can be expressed as solutions of random fixed point equations. Our first step is to derive these solutions (asymptotically), using a recent result on random fixed point equations. We consider a large population in which agents adapt one of the two available strategies, risky or risk-free investments, with an aim to maximize their expected returns (or surplus). We aim to study the emerging strategies when different types of replicator dynamics capture inter-agent interactions. We theoretically reduced the analysis of the complex system to that of an appropriate ordinary differential equation (ODE). We proved that the equilibrium strategies converge almost surely to that of an attractor of the ODE. We also derived the conditions under which a mixed evolutionary stable strategy (ESS) emerges; in these scenarios the replicator dynamics converges to an equilibrium at which the expected returns of both the populations are equal. Further the average dynamics (choices based on large observation sample) always averts systemic risk events (events with large fraction of defaults). We verified through Monte Carlo simulations that the equilibrium suggested by the ODE method indeed represents the limit of the dynamics.
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, and the exponents $p_pm$ usually vary with the strength of the large volatilities. The large-volatility dynamics is time-reversal symmetric at the time scale in minutes, while asymmetric at the daily time scale. Careful analysis reveals that the time-reversal asymmetry is mainly induced by exogenous events. It is also the exogenous events which drive the financial dynamics to a non-stationary state. Different characteristics of the Chinese and German stock markets are uncovered.
We introduce an auto-regressive model which captures the growing nature of realistic markets. In our model agents do not trade with other agents, they interact indirectly only through a market. Change of their wealth depends, linearly on how much they invest, and stochastically on how much they gain from the noisy market. The average wealth of the market could be fixed or growing. We show that in a market where investment capacity of agents differ, average wealth of agents generically follow the Pareto-law. In few cases, the individual distribution of wealth of every agent could also be obtained exactly. We also show that the underlying dynamics of other well studied kinetic models of markets can be mapped to the dynamics of our auto-regressive model.
A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles -SBM and dcSBM- allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.
Urban housing markets, along with markets of other assets, universally exhibit periods of strong price increases followed by sharp corrections. The mechanisms generating such non-linearities are not yet well understood. We develop an agent-based model populated by a large number of heterogeneous households. The agents behavior is compatible with economic rationality, with the trend-following behavior found to be essential in replicating market dynamics. The model is calibrated using several large and distributed datasets of the Greater Sydney region (demographic, economic and financial) across three specific and diverse periods since 2006. The model is not only capable of explaining price dynamics during these periods, but also reproduces the novel behavior actually observed immediately prior to the market peak in 2017, namely a sharp increase in the variability of prices. This novel behavior is related to a combination of trend-following aptitude of the household agents (rational herding) and their propensity to borrow.