Do you want to publish a course? Click here

Threats and Corrective Measures for IoT Security with Observance of Cybercrime: A Survey

91   0   0.0 ( 0 )
 Added by Aman Kataria Mr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Internet of Things (IoT) is the utmost assuring framework to facilitate human life with quality and comfort. IoT has contributed significantly to numerous application areas. The stormy expansion of smart devices and their credence for data transfer using wireless mechanics boosts their susceptibility to cyber-attacks. Consequently, the rate of cybercrime is increasing day by day. Hence, the study of IoT security threats and possible corrective measures can benefit the researchers to identify appropriate solutions to deal with various challenges in cybercrime investigation. IoT forensics plays a vital role in cybercrime investigations. This review paper presents an overview of the IoT framework consisting of IoT architecture, protocols, and technologies. Various security issues at each layer and corrective measures are also discussed in detail. This paper also presents the role of IoT forensics in cybercrime investigation in various domains like smart homes, smart cities, automated vehicles, healthcare, etc. Along with the role of advanced technologies like Artificial Intelligence, Machine Learning, Cloud computing, Edge computing, Fog computing, and Blockchain technology in cybercrime investigation are also discussed. At last, various open research challenges in IoT to assist cybercrime investigation are explained, which provide a new direction for further research.



rate research

Read More

With an enormous range of applications, Internet of Things (IoT) has magnetized industries and academicians from everywhere. IoT facilitates operations through ubiquitous connectivity by providing Internet access to all the devices with computing capabilities. With the evolution of wireless infrastructure, the focus from simple IoT has been shifted to smart, connected and mobile IoT (M-IoT) devices and platforms, which can enable low-complexity, low-cost and efficient computing through sensors, machines, and even crowdsourcing. All these devices can be grouped under a common term of M-IoT. Even though the positive impact on applications has been tremendous, security, privacy and trust are still the major concerns for such networks and an insufficient enforcement of these requirements introduces non-negligible threats to M-IoT devices and platforms. Thus, it is important to understand the range of solutions which are available for providing a secure, privacy-compliant, and trustworthy mechanism for M-IoT. There is no direct survey available, which focuses on security, privacy, trust, secure protocols, physical layer security and handover protections in M-IoT. This paper covers such requisites and presents comparisons of state-the-art solutions for IoT which are applicable to security, privacy, and trust in smart and connected M-IoT networks. Apart from these, various challenges, applications, advantages, technologies, standards, open issues, and roadmap for security, privacy and trust are also discussed in this paper.
The development of the Internet of Drones (IoD) becomes vital because of a proliferation of drone-based civilian or military applications. The IoD based technological revolution upgrades the current Internet environment into a more pervasive and ubiquitous world. IoD is capable of enhancing the state-of-the-art for drones while leveraging services from the existing cellular networks. Irrespective to a vast domain and range of applications, IoD is vulnerable to malicious attacks over open-air radio space. Due to increasing threats and attacks, there has been a lot of attention on deploying security measures for IoD networks. In this paper, critical threats and vulnerabilities of IoD are presented. Moreover, taxonomy is created to classify attacks based on the threats and vulnerabilities associated with the networking of drone and their incorporation in the existing cellular setups. In addition, this article summarizes the challenges and research directions to be followed for the security of IoD.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which in common deployment protect content transfer only up to the gateway. To preserve content security end-to-end via gateways and proxies, the IETF recently developed Object Security for Constrained RESTful Environments (OSCORE), which extends CoAP with content object security features commonly known from Information Centric Networks (ICN). This paper presents a comparative analysis of protocol stacks that protect request-response transactions. We measure protocol performances of CoAP over DTLS, OSCORE, and the information-centric Named Data Networking (NDN) protocol on a large-scale IoT testbed in single- and multi-hop scenarios. Our findings indicate that (a) OSCORE improves on CoAP over DTLS in error-prone wireless regimes due to omitting the overhead of maintaining security sessions at endpoints, and (b) NDN attains superior robustness and reliability due to its intrinsic network caches and hop-wise retransmissions.
Security and privacy of the users have become significant concerns due to the involvement of the Internet of things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers. Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems. Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However, these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a need for a combined survey on efforts made in recent years addressing both security and privacy issues using ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BCtechniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in the past twelve years in the IoT domain. Then, we classify the literature on security and privacy efforts based on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges and future research directions in using ML algorithms and BC techniques to address security and privacy issues in the IoT domain.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا