Direct Numerical Simulation of a Turbulent Boundary Layer with Strong Pressure Gradients


Abstract in English

The turbulent boundary layer over a Gaussian shaped bump is computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. The two-dimensional bump causes a series of strong pressure gradients alternating in rapid succession. At the inflow, the momentum thickness Reynolds number is approximately 1,000 and the boundary layer thickness is 1/8 of the bump height. DNS results show that the strong favorable pressure gradient (FPG) causes the boundary layer to enter a relaminarization process. The near-wall turbulence is significantly weakened and becomes intermittent, however relaminarization does not complete. The streamwise velocity profiles deviate above the standard logarithmic law and the Reynolds shear stress is reduced. The strong acceleration also suppresses the wall-shear normalized turbulent kinetic energy production rate. At the bump peak, where the FPG switches to an adverse gradient (APG), the near-wall turbulence is suddenly enhanced through a partial retransition process. This results in a new highly energized internal layer which is more resilient to the strong APG and only produces incipient flow separation on the downstream side. In the strong FPG and APG regions, the inner and outer layers become largely independent of each other. The near-wall region responds to the pressure gradients and determines the skin friction. The outer layer behaves similarly to a free-shear layer subject to pressure gradients and mean streamline curvature effects. Results from a RANS simulation of the bump are also discussed and clearly show the lack of predictive capacity of the near-wall pressure gradient effects on the mean flow.

Download