Eigenvalues of two-phase quantum walks with one defect in one dimension


Abstract in English

We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-defect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).

Download