No Arabic abstract
Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of the process poses many open questions. Experiments found time delays in the attosecond ($10^{-18}$ s) domain between electron ejection from different orbitals, electronic bands, or in different directions. Here, we demonstrate that across a molecular orbital the electron is not launched at the same time. The birth time rather depends on the travel time of the photon across the molecule, which is 247 zeptoseconds ($10^{-21}$ s) for the average bond length of H$_2$. Using an electron interferometric technique, we resolve this birth time delay between electron emission from the two centers of the hydrogen molecule.
We apply a three-dimensional (3D) implementation of the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method to investigate effects of electron correlation in the ground state of Be as well as in its photoionization dynamics by short XUV pulses, including time-delay in photoionization. First, we obtain the ground state by propagation in imaginary time. We show that the flexibility of the TD-RASSCF on the choice of the active orbital space makes it possible to consider only relevant active space orbitals, facilitating the convergence to the ground state compared to the multiconfigurational time-dependent Hartree-Fock method, used as a benchmark to show the accuracy and efficiency of TD-RASSCF. Second, we solve the equations of motion to compute photoelectron spectra of Be after interacting with a short linearly polarized XUV laser pulse. We compare the spectra for different RAS schemes, and in this way we identify the orbital spaces that are relevant for an accurate description of the photoelectron spectra. Finally, we investigate the effects of electron correlation on the magnitude of the relative time-delay in the photoionization process into two different ionic channels. One channel, the ground state channel in the ion, is accessible without electron correlation. The other channel is only accessible when including electron correlation. The time-delay is highly sensitivity to the choice of the active space, and hence to the account of electron-electron correlation.
We report measurements of energy-dependent attosecond photoionization delays between the two outer-most valence shells of N$_2$O and H$_2$O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N$_2$O, whereas the delays in H$_2$O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N$_2$O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to $sim$110 as. The unstructured continua of H$_2$O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.
In this Letter, we investigate the time delay of photoelectrons by fullerenes shell in endohedrals. We present general formulas in the frame of the random phase approximation with exchange (RPAE) applied to endohedrals A@CN that consist of an atom A located inside of a fullerenes shell constructed of N carbon atoms C. We calculate the time delay of electrons that leave the inner atom A in course of A@CN photoionization. Our aim is to clarify the role that is played by CN shell. As concrete examples of A we have considered Ne, Fr, Kr and Xe, and as fullerene we consider C60. The presence of the C60 shell manifests itself in powerful oscillations of the time delay of an electron that is ionized from a given subshell nl by a photon with energy. Calculations are performed for outer, subvalent and d-subshells.
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) light pulses and to the asymptotic phase-shifts of photoelectron wave packets. Special emphasis is laid on time-delay experiments, where attosecond XUV pulses are used to photoionize target atoms at well-defined times, followed by a probing process in real time by a phase-locked, infrared laser field. In this way, the laser field serves as a clock to monitor the ionization event, but the observable delays do not correspond directly to the delay associated with single-photon ionization. Instead, a significant part of the observed delay originates from a measurement induced process, which obscures the single-photon ionization dynamics. This artifact is traced back to a phase-shift of the above-threshold ionization transition matrix element, which we call the continuum-continuum phase. It arises due to the laser-stimulated transitions between Coulomb continuum states. As we shall show here, these measurement-induced effects can be separated from the single-photon ionization process, using analytical expressions of universal character, so that eventually the attosecond time-delays in photoionization can be accessed.
Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration ($10^{-18}$s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses may raise serious issues in the interpretation of the experimental results and the comparison with detailed theoretical calculations. Here, we determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake up, where a second electron is left in an excited state, thus obtaining excellent agreement with theoretical calculations and thereby solving a puzzle raised by seven-year-old measurements. Our experimental approach does not have conceptual limits, allowing us to foresee, with the help of upcoming laser technology, ultra-high resolution time-frequency studies from the visible to the x-ray range.