Do you want to publish a course? Click here

On the exact computation of linear frequency principle dynamics and its generalization

228   0   0.0 ( 0 )
 Added by Zhiqin Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent works show an intriguing phenomenon of Frequency Principle (F-Principle) that deep neural networks (DNNs) fit the target function from low to high frequency during the training, which provides insight into the training and generalization behavior of DNNs in complex tasks. In this paper, through analysis of an infinite-width two-layer NN in the neural tangent kernel (NTK) regime, we derive the exact differential equation, namely Linear Frequency-Principle (LFP) model, governing the evolution of NN output function in the frequency domain during the training. Our exact computation applies for general activation functions with no assumption on size and distribution of training data. This LFP model unravels that higher frequencies evolve polynomially or exponentially slower than lower frequencies depending on the smoothness/regularity of the activation function. We further bridge the gap between training dynamics and generalization by proving that LFP model implicitly minimizes a Frequency-Principle norm (FP-norm) of the learned function, by which higher frequencies are more severely penalized depending on the inverse of their evolution rate. Finally, we derive an textit{a priori} generalization error bound controlled by the FP-norm of the target function, which provides a theoretical justification for the empirical results that DNNs often generalize well for low frequency functions.



rate research

Read More

Generative Adversarial Networks (GANs), though powerful, is hard to train. Several recent works (brock2016neural,miyato2018spectral) suggest that controlling the spectra of weight matrices in the discriminator can significantly improve the training of GANs. Motivated by their discovery, we propose a new framework for training GANs, which allows more flexible spectrum control (e.g., making the weight matrices of the discriminator have slow singular value decays). Specifically, we propose a new reparameterization approach for the weight matrices of the discriminator in GANs, which allows us to directly manipulate the spectra of the weight matrices through various regularizers and constraints, without intensively computing singular value decompositions. Theoretically, we further show that the spectrum control improves the generalization ability of GANs. Our experiments on CIFAR-10, STL-10, and ImageNet datasets confirm that compared to other methods, our proposed method is capable of generating images with competitive quality by utilizing spectral normalization and encouraging the slow singular value decay.
Generative Adversarial Imitation Learning (GAIL) is a powerful and practical approach for learning sequential decision-making policies. Different from Reinforcement Learning (RL), GAIL takes advantage of demonstration data by experts (e.g., human), and learns both the policy and reward function of the unknown environment. Despite the significant empirical progresses, the theory behind GAIL is still largely unknown. The major difficulty comes from the underlying temporal dependency of the demonstration data and the minimax computational formulation of GAIL without convex-concave structure. To bridge such a gap between theory and practice, this paper investigates the theoretical properties of GAIL. Specifically, we show: (1) For GAIL with general reward parameterization, the generalization can be guaranteed as long as the class of the reward functions is properly controlled; (2) For GAIL, where the reward is parameterized as a reproducing kernel function, GAIL can be efficiently solved by stochastic first order optimization algorithms, which attain sublinear convergence to a stationary solution. To the best of our knowledge, these are the first results on statistical and computational guarantees of imitation learning with reward/policy function approximation. Numerical experiments are provided to support our analysis.
355 - Yaoyu Zhang , Tao Luo , Zheng Ma 2021
Why heavily parameterized neural networks (NNs) do not overfit the data is an important long standing open question. We propose a phenomenological model of the NN training to explain this non-overfitting puzzle. Our linear frequency principle (LFP) model accounts for a key dynamical feature of NNs: they learn low frequencies first, irrespective of microscopic details. Theory based on our LFP model shows that low frequency dominance of target functions is the key condition for the non-overfitting of NNs and is verified by experiments. Furthermore, through an ideal two-layer NN, we unravel how detailed microscopic NN training dynamics statistically gives rise to a LFP model with quantitative prediction power.
150 - Alex Irpan , Xingyou Song 2019
Several recent papers have examined generalization in reinforcement learning (RL), by proposing new environments or ways to add noise to existing environments, then benchmarking algorithms and model architectures on those environments. We discuss subtle conceptual properties of RL benchmarks that are not required in supervised learning (SL), and also properties that an RL benchmark should possess. Chief among them is one we call the principle of unchanged optimality: there should exist a single $pi$ that is optimal across all train and test tasks. In this work, we argue why this principle is important, and ways it can be broken or satisfied due to subtle choices in state representation or model architecture. We conclude by discussing challenges and future lines of research in theoretically analyzing generalization benchmarks.
Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks. Yet, there is little rigorous understanding of why and how various augmentations work. In this work, we consider a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting. First, we show that transformations which preserve the labels of the data can improve estimation by enlarging the span of the training data. Second, we show that transformations which mix data can improve estimation by playing a regularization effect. Finally, we validate our theoretical insights on MNIST. Based on the insights, we propose an augmentation scheme that searches over the space of transformations by how uncertain the model is about the transformed data. We validate our proposed scheme on image and text datasets. For example, our method outperforms RandAugment by 1.24% on CIFAR-100 using Wide-ResNet-28-10. Furthermore, we achieve comparable accuracy to the SoTA Adversarial AutoAugment on CIFAR datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا