No Arabic abstract
In this paper, we present the analytical theory of attosecond pulse formation via optical modulation of an active medium of the hydrogen-like C5+ plasma-based X-ray laser at 3.4 nm wavelength in the water window range, taking into account a variation of the population inversion caused by radiative decay of the upper lasing states. We derive an analytical solution for the X-ray field amplified by an X-ray laser with time-dependent population inversion, which is simultaneously irradiated by a strong optical laser field, and use it to find the optimal conditions for the attosecond pulse formation from a narrowband seeding X-ray field. We show that the shape of pulses can be improved at the cost of reduced pulse peak intensity (i) via external attenuation of the resonant spectral component of the amplified X-ray field or (ii) by using a resonantly absorbing medium (the active medium of the X-ray laser after the change of sign of the population inversion) for the pulse formation. The results of the analytical theory are in a good agreement with the numerical solutions of the Maxwell-Bloch equations which account for the nonlinearity, as well as the amplified spontaneous emission, of the active medium. Both analytically and numerically we show the possibility to produce a train of attosecond pulses with sub-200 as duration and the peak intensity exceeding 10^12 W/cm^2 at the carrier wavelength 3.4 nm in the water window range, which makes them attractive for the biological and medical applications.
We derive the analytical theory describing the process of sub-femtosecond pulse formation from a quasi-monochromatic seeding extreme ultraviolet (XUV) radiation, which propagates in active medium of a hydrogen-like plasma-based X-ray laser dressed by a strong infrared laser field. We discuss the ultimate capabilities and limitations of this process on the basis of the derived analytical solution and extensive numerical studies for the case of Li2+ plasma-based X-ray laser with a carrier wavelength 13.5nm. We analyze the role of plasma dispersion and find the optimal conditions for the formation of attosecond pulses with the highest contrast. Under the optimal conditions, the influence of amplified spontaneous emission from the active medium is negligible. The peak intensity of the produced XUV pulses can exceed 10^10-10^11 W/cm^2, while the duration of pulses varies in the range of 400-600 as.
We propose a method for amplifying a train of sub-femtosecond pulses of circularly or elliptically polarized extreme ultraviolet (XUV) radiation constituted by high-order harmonics of an infrared (IR) laser field, in a neon-like active medium of a plasma-based X-ray laser, additionally irradiated with a replica of a fundamental frequency IR field. It is shown that the ellipticity of the pulses can be maintained or increased during the amplification process. The experimental implementation is suggested in an active medium of an X-ray laser based on neon-like Ti^{12+} ions irradiated by an IR laser field with a wavelength of 3.9 microns.
In [I.R. Khairulin et al., submitted to Phys. Rev. Lett.] we propose a method for amplifying a train of sub-femtosecond pulses of circularly or elliptically polarized extreme ultraviolet (XUV) radiation, constituted by high-order harmonics of an infrared (IR) laser field, in a neon-like active medium of a plasma-based X-ray laser, additionally irradiated with a replica of a fundamental frequency laser field used to generate harmonics, and show the possibility of maintaining or enhancing the ellipticity of high-harmonic radiation during its amplification. In the present paper we describe this process in detail both for a single harmonic component and a sub-femtosecond pulse train formed by a set of harmonics. We derive the analytical theory and describe both analytically and numerically the evolution of the high-harmonic field during its propagation through the medium. We discuss also the possibility of an experimental implementation of the suggested technique in an active medium of an X-ray laser based on neon-like Ti^{12+} ions irradiated by an IR laser field with a wavelength of 3.9 microns.
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer transverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
Attosecond pulses are fundamental for the investigation of valence and core-electron dynamics on their natural timescale. At present the reproducible generation and characterisation of attosecond waveforms has been demonstrated only through the process of high-order harmonic generation. Several methods for the shaping of attosecond waveforms have been proposed, including metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allow for the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free Electron Lasers, on the contrary, deliver femtosecond, extreme ultraviolet and X-ray pulses with energies ranging from tens of $mathrm{mu}$J to a few mJ. Recent experiments have shown that they can generate sub-fs spikes, but with temporal characteristics that change shot-to-shot. Here we show the first demonstration of reproducible generation of high energy ($mathrm{mu}$J level) attosecond waveforms using a seeded Free Electron Laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with a novel approach for its temporal reconstruction. The results presented here open the way to perform attosecond time-resolved experiments with Free Electron Lasers.