Do you want to publish a course? Click here

Stochastic Bandits with Vector Losses: Minimizing $ell^infty$-Norm of Relative Losses

98   0   0.0 ( 0 )
 Added by Xuedong Shang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multi-armed bandits are widely applied in scenarios like recommender systems, for which the goal is to maximize the click rate. However, more factors should be considered, e.g., user stickiness, user growth rate, user experience assessment, etc. In this paper, we model this situation as a problem of $K$-armed bandit with multiple losses. We define relative loss vector of an arm where the $i$-th entry compares the arm and the optimal arm with respect to the $i$-th loss. We study two goals: (a) finding the arm with the minimum $ell^infty$-norm of relative losses with a given confidence level (which refers to fixed-confidence best-arm identification); (b) minimizing the $ell^infty$-norm of cumulative relative losses (which refers to regret minimization). For goal (a), we derive a problem-dependent sample complexity lower bound and discuss how to achieve matching algorithms. For goal (b), we provide a regret lower bound of $Omega(T^{2/3})$ and provide a matching algorithm.

rate research

Read More

When optimizing against the mean loss over a distribution of predictions in the context of a regression task, then even if there is a distribution of targets the optimal prediction distribution is always a delta function at a single value. Methods of constructing generative models need to overcome this tendency. We consider a simple method of summarizing the prediction error, such that the optimal strategy corresponds to outputting a distribution of predictions with a support that matches the support of the distribution of targets --- optimizing against the minimal value of the loss given a set of samples from the prediction distribution, rather than the mean. We show that models trained against this loss learn to capture the support of the target distribution and, when combined with an auxiliary classifier-like prediction task, can be projected via rejection sampling to reproduce the full distribution of targets. The resulting method works well compared to other generative modeling approaches particularly in low dimensional spaces with highly non-trivial distributions, due to mode collapse solutions being globally suboptimal with respect to the extreme value loss. However, the method is less suited to high-dimensional spaces such as images due to the scaling of the number of samples needed in order to accurately estimate the extreme value loss when the dimension of the data manifold becomes large.
117 - Avrim Blum , Han Shao 2020
We study the problem of online learning with primary and secondary losses. For example, a recruiter making decisions of which job applicants to hire might weigh false positives and false negatives equally (the primary loss) but the applicants might weigh false negatives much higher (the secondary loss). We consider the following question: Can we combine expert advice to achieve low regret with respect to the primary loss, while at the same time performing {em not much worse than the worst expert} with respect to the secondary loss? Unfortunately, we show that this goal is unachievable without any bounded variance assumption on the secondary loss. More generally, we consider the goal of minimizing the regret with respect to the primary loss and bounding the secondary loss by a linear threshold. On the positive side, we show that running any switching-limited algorithm can achieve this goal if all experts satisfy the assumption that the secondary loss does not exceed the linear threshold by $o(T)$ for any time interval. If not all experts satisfy this assumption, our algorithms can achieve this goal given access to some external oracles which determine when to deactivate and reactivate experts.
Adversarial robustness is an increasingly critical property of classifiers in applications. The design of robust algorithms relies on surrogate losses since the optimization of the adversarial loss with most hypothesis sets is NP-hard. But which surrogate losses should be used and when do they benefit from theoretical guarantees? We present an extensive study of this question, including a detailed analysis of the H-calibration and H-consistency of adversarial surrogate losses. We show that, under some general assumptions, convex loss functions, or the supremum-based convex losses often used in applications, are not H-calibrated for important hypothesis sets such as generalized linear models or one-layer neural networks. We then give a characterization of H-calibration and prove that some surrogate losses are indeed H-calibrated for the adversarial loss, with these hypothesis sets. Next, we show that H-calibration is not sufficient to guarantee consistency and prove that, in the absence of any distributional assumption, no continuous surrogate loss is consistent in the adversarial setting. This, in particular, proves that a claim presented in a COLT 2020 publication is inaccurate. (Calibration results there are correct modulo subtle definition differences, but the consistency claim does not hold.) Next, we identify natural conditions under which some surrogate losses that we describe in detail are H-consistent for hypothesis sets such as generalized linear models and one-layer neural networks. We also report a series of empirical results with simulated data, which show that many H-calibrated surrogate losses are indeed not H-consistent, and validate our theoretical assumptions.
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of $T$ rounds is maximum, and each has an expected cost below a certain threshold $tau$. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove an $widetilde{mathcal{O}}(frac{dsqrt{T}}{tau-c_0})$ bound on its $T$-round regret, where the denominator is the difference between the constraint threshold and the cost of a known feasible action. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting. We prove a regret bound of $widetilde{mathcal{O}}(frac{sqrt{KT}}{tau - c_0})$ for this algorithm in $K$-armed bandits, which is a $sqrt{K}$ improvement over the regret bound we obtain by simply casting multi-armed bandits as an instance of contextual linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results.
The simplicity of gradient descent (GD) made it the default method for training ever-deeper and complex neural networks. Both loss functions and architectures are often explicitly tuned to be amenable to this basic local optimization. In the context of weakly-supervised CNN segmentation, we demonstrate a well-motivated loss function where an alternative optimizer (ADM) achieves the state-of-the-art while GD performs poorly. Interestingly, GD obtains its best result for a smoother tuning of the loss function. The results are consistent across different network architectures. Our loss is motivated by well-understood MRF/CRF regularization models in shallow segmentation and their known global solvers. Our work suggests that network design/training should pay more attention to optimization methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا