No Arabic abstract
Human face features can be used to determine individual identity as well as demographic information like gender and race. However, the extent to which black-box commercial face recognition algorithms (CFRAs) use gender and race features to determine identity is poorly understood despite increasing deployments by government and industry. In this study, we quantified the degree to which gender and race features influenced face recognition similarity scores between different people, i.e. non-mated scores. We ran this study using five different CFRAs and a sample of 333 diverse test subjects. As a control, we compared the behavior of these non-mated distributions to a commercial iris recognition algorithm (CIRA). Confirming prior work, all CFRAs produced higher similarity scores for people of the same gender and race, an effect known as broad homogeneity. No such effect was observed for the CIRA. Next, we applied principal components analysis (PCA) to similarity score matrices. We show that some principal components (PCs) of CFRAs cluster people by gender and race, but the majority do not. Demographic clustering in the PCs accounted for only 10 % of the total CFRA score variance. No clustering was observed for the CIRA. This demonstrates that, although CFRAs use some gender and race features to establish identity, most features utilized by current CFRAs are unrelated to gender and race, similar to the iris texture patterns utilized by the CIRA. Finally, reconstruction of similarity score matrices using only PCs that showed no demographic clustering reduced broad homogeneity effects, but also decreased the separation between mated and non-mated scores. This suggests its possible for CFRAs to operate on features unrelated to gender and race, albeit with somewhat lower recognition accuracy, but that this is not the current commercial practice.
Face recognition has advanced considerably with the availability of large-scale labeled datasets. However, how to further improve the performance with the easily accessible unlabeled dataset remains a challenge. In this paper, we propose the novel Unknown Identity Rejection (UIR) loss to utilize the unlabeled data. We categorize identities in unconstrained environment into the known set and the unknown set. The former corresponds to the identities that appear in the labeled training dataset while the latter is its complementary set. Besides training the model to accurately classify the known identities, we also force the model to reject unknown identities provided by the unlabeled dataset via our proposed UIR loss. In order to reject faces of unknown identities, centers of the known identities are forced to keep enough margin from centers of unknown identities which are assumed to be approximated by the features of their samples. By this means, the discriminativeness of the face representations can be enhanced. Experimental results demonstrate that our approach can provide obvious performance improvement by utilizing the unlabeled data.
With the recent advancement of deep convolutional neural networks, significant progress has been made in general face recognition. However, the state-of-the-art general face recognition models do not generalize well to occluded face images, which are exactly the common cases in real-world scenarios. The potential reasons are the absences of large-scale occluded face data for training and specific designs for tackling corrupted features brought by occlusions. This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network. Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks. In addition, we construct massive occluded face images to train FROM effectively and efficiently. FROM is simple yet powerful compared to the existing methods that either rely on external detectors to discover the occlusions or employ shallow models which are less discriminative. Experimental results on the LFW, Megaface challenge 1, RMF2, AR dataset and other simulated occluded/masked datasets confirm that FROM dramatically improves the accuracy under occlusions, and generalizes well on general face recognition.
We propose a novel framework for the analysis of learning algorithms that allows us to say when such algorithms can and cannot generalize certain patterns from training data to test data. In particular we focus on situations where the rule that must be learned concerns two components of a stimulus being identical. We call such a basis for discrimination an identity-based rule. Identity-based rules have proven to be difficult or impossible for certain types of learning algorithms to acquire from limited datasets. This is in contrast to human behaviour on similar tasks. Here we provide a framework for rigorously establishing which learning algorithms will fail at generalizing identity-based rules to novel stimuli. We use this framework to show that such algorithms are unable to generalize identity-based rules to novel inputs unless trained on virtually all possible inputs. We demonstrate these results computationally with a multilayer feedforward neural network.
In this paper, a multi-resolution feature extraction algorithm for face recognition is proposed based on two-dimensional discrete wavelet transform (2D-DWT), which efficiently exploits the local spatial variations in a face image. For the purpose of feature extraction, instead of considering the entire face image, an entropy-based local band selection criterion is developed, which selects high-informative horizontal segments from the face image. In order to capture the local spatial variations within these highinformative horizontal bands precisely, the horizontal band is segmented into several small spatial modules. Dominant wavelet coefficients corresponding to each local region residing inside those horizontal bands are selected as features. In the selection of the dominant coefficients, a threshold criterion is proposed, which not only drastically reduces the feature dimension but also provides high within-class compactness and high between-class separability. A principal component analysis is performed to further reduce the dimensionality of the feature space. Extensive experimentation is carried out upon standard face databases and a very high degree of recognition accuracy is achieved by the proposed method in comparison to those obtained by some of the existing methods.
As facial appearance is subject to significant intra-class variations caused by the aging process over time, age-invariant face recognition (AIFR) remains a major challenge in face recognition community. To reduce the intra-class discrepancy caused by the aging, in this paper we propose a novel approach (namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant deep face features. Specifically, we decompose deep face features into two orthogonal components to represent age-related and identity-related features. As a result, identity-related features that are robust to aging are then used for AIFR. Besides, for complementing the existing cross-age datasets and advancing the research in this field, we construct a brand-new large-scale Cross-Age Face dataset (CAF). Extensive experiments conducted on the three public domain face aging datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effectiveness of the proposed approach and the value of the constructed CAF dataset on AIFR. Benchmarking our algorithm on one of the most popular general face recognition (GFR) dataset LFW additionally demonstrates the comparable generalization performance on GFR.