Do you want to publish a course? Click here

Stochastic Fractal and Noethers Theorem

121   0   0.0 ( 0 )
 Added by Kamrul Hassan Md.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the binary fragmentation problem in which, at any breakup event, one of the daughter segments either survives with probability $p$ or disappears with probability $1!-!p$. It describes a stochastic dyadic Cantor set that evolves in time, and eventually becomes a fractal. We investigate this phenomenon, through analytical methods and Monte Carlo simulation, for a generic class of models, where segment breakup points follow a symmetric beta distribution with shape parameter $alpha$, which also determines the fragmentation rate. For a fractal dimension $d_f$, we find that the $d_f$-th moment $M_{d_f}$ is a conserved quantity, independent of $p$ and $alpha$. We use the idea of data collapse -- a consequence of dynamical scaling symmetry -- to demonstrate that the system exhibits self-similarity. In an attempt to connect the symmetry with the conserved quantity, we reinterpret the fragmentation equation as the continuity equation of a Euclidean quantum-mechanical system. Surprisingly, the Noether charge corresponding to dynamical scaling is trivial, while $M_{d_f}$ relates to a purely mathematical symmetry: quantum-mechanical phase rotation in Euclidean time.



rate research

Read More

Noethers calculus of invariant variations yields exact identities from functional symmetries. The standard application to an action integral allows to identify conservation laws. Here we rather consider generating functionals, such as the free energy and the power functional, for equilibrium and driven many-body systems. Translational and rotational symmetry operations yield mechanical laws. These global identities express vanishing of total internal and total external forces and torques. We show that functional differentiation then leads to hierarchies of local sum rules that interrelate density correlators as well as static and time direct correlation functions, including memory. For anisotropic particles, orbital and spin motion become systematically coupled. The theory allows us to shed new light on the spatio-temporal coupling of correlations in complex systems. As applications we consider active Brownian particles, where the theory clarifies the role of interfacial forces in motility-induced phase separation. For active sedimentation, the center-of-mass motion is constrained by an internal Noether sum rule.
136 - I.T. Drummond , R.R. Horgan 2011
We extend the work of Tanase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for {it slave variables}. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements together with the associated surface and volume elements constructed from them provide the basis of the supersymmetry properties of the theory. For ease of visualisation, and in order to emphasise a helpful electromagnetic analogy, we work in three dimensions. The results are all generalisable to higher dimensions and can be specialised to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities.
175 - Klaus Bering 2009
We give an elementary proof of Noethers first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.
We compute the crossover exponents of all quadratic and cubic deformations of critical field theories with permutation symmetry $S_q$ in $d=6-epsilon$ (Landau-Potts field theories) and $d=4-epsilon$ (hypertetrahedral models) up to three loops.We use our results to determine the $epsilon$-expansion of the fractal dimension of critical clusters in the most interesting cases, which include spanning trees and forests ($qto0$), and bond percolations ($qto1$). We also explicitly verify several expected degeneracies in the spectrum of relevant operators for natural values of $q$ upon analytic continuation, which are linked to logarithmic corrections of CFT correlators, and use the $epsilon$-expansion to determine the universal coefficients of such logarithms.
We present a stochastic approach for ion transport at the mesoscopic level. The description takes into account the self-consistent electric field generated by the fixed and mobile charges as well as the discrete nature of these latter. As an application we study the noise in the ion transport process, including the effect of the displacement current generated by the fluctuating electric field. The fluctuation theorem is shown to hold for the electric current with and without the displacement current.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا