No Arabic abstract
Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks. Code shall be released.
Most existing point cloud instance and semantic segmentation methods rely heavily on strong supervision signals, which require point-level labels for every point in the scene. However, such strong supervision suffers from large annotation costs, arousing the need to study efficient annotating. In this paper, we discover that the locations of instances matter for 3D scene segmentation. By fully taking the advantages of locations, we design a weakly supervised point cloud segmentation algorithm that only requires clicking on one point per instance to indicate its location for annotation. With over-segmentation for pre-processing, we extend these location annotations into segments as seg-level labels. We further design a segment grouping network (SegGroup) to generate pseudo point-level labels under seg-level labels by hierarchically grouping the unlabeled segments into the relevant nearby labeled segments, so that existing point-level supervised segmentation models can directly consume these pseudo labels for training. Experimental results show that our seg-level supervised method (SegGroup) achieves comparable results with the fully annotated point-level supervised methods. Moreover, it also outperforms the recent weakly supervised methods given a fixed annotation budget.
This paper proposes a novel active boundary loss for semantic segmentation. It can progressively encourage the alignment between predicted boundaries and ground-truth boundaries during end-to-end training, which is not explicitly enforced in commonly used cross-entropy loss. Based on the predicted boundaries detected from the segmentation results using current network parameters, we formulate the boundary alignment problem as a differentiable direction vector prediction problem to guide the movement of predicted boundaries in each iteration. Our loss is model-agnostic and can be plugged into the training of segmentation networks to improve the boundary details. Experimental results show that training with the active boundary loss can effectively improve the boundary F-score and mean Intersection-over-Union on challenging image and video object segmentation datasets.
Camera and 3D LiDAR sensors have become indispensable devices in modern autonomous driving vehicles, where the camera provides the fine-grained texture, color information in 2D space and LiDAR captures more precise and farther-away distance measurements of the surrounding environments. The complementary information from these two sensors makes the two-modality fusion be a desired option. However, two major issues of the fusion between camera and LiDAR hinder its performance, ie, how to effectively fuse these two modalities and how to precisely align them (suffering from the weak spatiotemporal synchronization problem). In this paper, we propose a coarse-to-fine LiDAR and camera fusion-based network (termed as LIF-Seg) for LiDAR segmentation. For the first issue, unlike these previous works fusing the point cloud and image information in a one-to-one manner, the proposed method fully utilizes the contextual information of images and introduces a simple but effective early-fusion strategy. Second, due to the weak spatiotemporal synchronization problem, an offset rectification approach is designed to align these two-modality features. The cooperation of these two components leads to the success of the effective camera-LiDAR fusion. Experimental results on the nuScenes dataset show the superiority of the proposed LIF-Seg over existing methods with a large margin. Ablation studies and analyses demonstrate that our proposed LIF-Seg can effectively tackle the weak spatiotemporal synchronization problem.
Birds-eye-view (BEV) is a powerful and widely adopted representation for road scenes that captures surrounding objects and their spatial locations, along with overall context in the scene. In this work, we focus on birds eye semantic segmentation, a task that predicts pixel-wise semantic segmentation in BEV from side RGB images. This task is made possible by simulators such as Carla, which allow for cheap data collection, arbitrary camera placements, and supervision in ways otherwise not possible in the real world. There are two main challenges to this task: the view transformation from side view to birds eye view, as well as transfer learning to unseen domains. Existing work transforms between views through fully connected layers and transfer learns via GANs. This suffers from a lack of depth reasoning and performance degradation across domains. Our novel 2-staged perception pipeline explicitly predicts pixel depths and combines them with pixel semantics in an efficient manner, allowing the model to leverage depth information to infer objects spatial locations in the BEV. In addition, we transfer learning by abstracting high-level geometric features and predicting an intermediate representation that is common across different domains. We publish a new dataset called BEVSEG-Carla and show that our approach improves state-of-the-art by 24% mIoU and performs well when transferred to a new domain.
We present FasterSeg, an automatically designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods. Utilizing neural architecture search (NAS), FasterSeg is discovered from a novel and broader search space integrating multi-resolution branches, that has been recently found to be vital in manually designed segmentation models. To better calibrate the balance between the goals of high accuracy and low latency, we propose a decoupled and fine-grained latency regularization, that effectively overcomes our observed phenomenons that the searched networks are prone to collapsing to low-latency yet poor-accuracy models. Moreover, we seamlessly extend FasterSeg to a new collaborative search (co-searching) framework, simultaneously searching for a teacher and a student network in the same single run. The teacher-student distillation further boosts the student models accuracy. Experiments on popular segmentation benchmarks demonstrate the competency of FasterSeg. For example, FasterSeg can run over 30% faster than the closest manually designed competitor on Cityscapes, while maintaining comparable accuracy.