Adversarial Images through Stega Glasses


Abstract in English

This paper explores the connection between steganography and adversarial images. On the one hand, ste-ganalysis helps in detecting adversarial perturbations. On the other hand, steganography helps in forging adversarial perturbations that are not only invisible to the human eye but also statistically undetectable. This work explains how to use these information hiding tools for attacking or defending computer vision image classification. We play this cat and mouse game with state-of-art classifiers, steganalyzers, and steganographic embedding schemes. It turns out that steganography helps more the attacker than the defender.

Download