Do you want to publish a course? Click here

Joint SO(3)-Spectral Domain Filtering of Spherical Signals in the Presence of Anisotropic Noise

94   0   0.0 ( 0 )
 Added by Zubair Khalid
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a joint SO(3)-spectral domain filtering framework using directional spatially localized spherical harmonic transform (DSLSHT), for the estimation and enhancement of random anisotropic signals on the sphere contaminated by random anisotropic noise. We design an optimal filter for filtering the DSLSHT representation of the noise-contaminated signal in the joint SO(3)-spectral domain. The filter is optimal in the sense that the filtered representation in the joint domain is the minimum mean square error estimate of the DSLSHT representation of the underlying (noise-free) source signal. We also derive a least-square solution for the estimate of the source signal from the filtered representation in the joint domain. We demonstrate the capability of the proposed filtering framework using the Earth topography map in the presence of anisotropic, zero-mean, uncorrelated Gaussian noise, and compare its performance with the joint spatial-spectral domain filtering framework.



rate research

Read More

We present a framework for the optimal filtering of spherical signals contaminated by realizations of an additive, zero-mean, uncorrelated and anisotropic noise process on the sphere. Filtering is performed in the wavelet domain given by the scale-discretized wavelet transform on the sphere. The proposed filter is optimal in the sense that it minimizes the mean square error between the filtered wavelet representation and wavelet representation of the noise-free signal. We also present a simplified formulation of the filter for the case when azimuthally symmetric wavelet functions are used. We demonstrate the use of the proposed optimal filter for denoising of an Earth topography map in the presence of additive, zero-mean, uncorrelated and white Gaussian noise, and show that the proposed filter performs better than the hard thresholding method and weighted spherical harmonic~(weighted-SPHARM) signal estimation framework.
Reconstructing a band-limited function from its finite sample data is a fundamental task in signal analysis. A simple Gaussian or hyper-Gaussian regularized Shannon sampling series has been proved to be able to achieve exponential convergence for uniform sampling. In this paper, we prove that exponential approximation can also be attained for general nonuniform sampling. The analysis is based on the the residue theorem to represent the truncated error by a contour integral. Several concrete examples of nonuniform sampling with exponential convergence will be presented.
6G will likely be the first generation of mobile communication that will feature tight integration of localization and sensing with communication functionalities. Among several worldwide initiatives, the Hexa-X flagship project stands out as it brings together 25 key players from adjacent industries and academia, and has among its explicit goals to research fundamentally new radio access technologies and high-resolution localization and sensing. Such features will not only enable novel use cases requiring extreme localization performance, but also provide a means to support and improve communication functionalities. This paper provides an overview of the Hexa-X vision alongside the envisioned use cases. To close the required performance gap of these use cases with respect to 5G, several technical enablers will be discussed, together with the associated research challenges for the coming years.
In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or a random graph process, and each agent, taking bipolar value either +1 or -1, updates its value according to its previous value and the noisy measurements of the values of the agents connected to it. We present proofs for the occurrence of the following phase transition behavior: At a noise level higher than some threshold, the system generates symmetric behavior (vapor or melt of magnetization) or disagreement; whereas at a noise level lower than the threshold, the system exhibits spontaneous symmetry breaking (solid or magnetization) or consensus. The threshold is found analytically. The phase transition occurs for any dimension. Finally, we demonstrate the phase transition behavior and all analytic results using simulations. This result may be found useful in the study of the collective behavior of complex systems under communication constraints.
Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array radars at the sub-Nyquist rates are considered in this paper. We propose a new sub-Nyquist array radar architecture (a binary array radar separately connected to a multi-coset structure with M branches) and an efficient joint estimation algorithm which can match frequencies up with corresponding DOAs. We further come up with a delay pattern augmenting method, by which the capability of the number of identifiable signals can increase from M-1 to Q-1 (Q is extended degrees of freedom). We further conclude that the minimum total sampling rate 2MB is sufficient to identify $ {K leq Q-1}$ narrow-band signals of maximum bandwidth $B$ inside. The effectiveness and performance of the estimation algorithm together with the augmenting method have been verified by simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا