We study the sequence of zeta functions $Z(C_p,T)$ of a generic Picard curve $C:y^3=f(x)$ defined over $mathbb{Q}$ at primes $p$ of good reduction for $C$. We define a degree 9 polynomial $psi_fin mathbb{Q}[x]$ such that the splitting field of $psi_f(x^3/2)$ is the $2$-torsion field of the Jacobian of $C$. We prove that, for all but a density zero subset of primes, the zeta function $Z(C_p,T)$ is uniquely determined by the Cartier-Manin matrix $A_p$ of $C$ modulo $p$ and the splitting behavior modulo $p$ of $f$ and $psi_f$; we also show that for primes $equiv 1 pmod{3}$ the matrix $A_p$ suffices and that for primes $equiv 2 pmod{3}$ the genericity assumption on $C$ is unnecessary. An element of the proof, which may be of independent interest, is the determination of the density of the set of primes of ordinary reduction for a generic Picard curve. By combining this with recent work of Sutherland, we obtain a practical deterministic algorithm that computes $Z(C_p,T)$ for almost all primes $p le N$ using $Nlog(N)^{3+o(1)}$ bit operations. This is the first practical result of this type for curves of genus greater than 2.