In the present paper, we prove that the toric ideals of certain $s$-block diagonal matching fields have quadratic Grobner bases. Thus, in particular, those are quadratically generated. By using this result, we provide a new family of toric degenerations of Grassmannians.
The universal Gr{o}bner basis of $I$, is a Gr{o}bner basis for $I$ with respect to all term orders simultaneously. Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the elements of the universal Gr{o}bner basis of the toric ideal $I_G$. We provide a bound for the degree of the binomials in the universal Gr{o}bner basis of the toric ideal of a graph. Finally we give a family of examples of circuits for which their true degrees are less than the degrees of some elements of the Graver basis.
We study Grobner degenerations of Schubert varieties inside flag varieties. We consider toric degenerations of flag varieties induced by matching fields and semi-standard Young tableaux. We describe an analogue of matching field ideals for Schubert varieties inside the flag variety and give a complete characterization of toric ideals among them. We use a combinatorial approach to standard monomial theory to show that block diagonal matching fields give rise to toric degenerations. Our methods and results use the combinatorics of permutations associated to Schubert varieties, matching fields and their corresponding tableaux.
To any toric ideal $I_A$, encoded by an integer matrix $A$, we associate a matroid structure called {em the bouquet graph} of $A$ and introduce another toric ideal called {em the bouquet ideal} of $A$. We show how these objects capture the essential combinatorial and algebraic information about $I_A$. Passing from the toric ideal to its bouquet ideal reveals a structure that allows us to classify several cases. For example, on the one end of the spectrum, there are ideals that we call {em stable}, for which bouquets capture the complexity of various generating sets as well as the minimal free resolution. On the other end of the spectrum lie toric ideals whose various bases (e.g., minimal generating sets, Grobner, Graver bases) coincide. Apart from allowing for classification-type results, bouquets provide a new way to construct families of examples of toric ideals with various interesting properties, such as robustness, genericity, and unimodularity. The new bouquet framework can be used to provide a characterization of toric ideals whose Graver basis, the universal Grobner basis, any reduced Grobner basis and any minimal generating set coincide.
Relying on the combinatorial classification of toric ideals using their bouquet structure, we focus on toric ideals of hypergraphs and study how they relate to general toric ideals. We show that hypergraphs exhibit a surprisingly general behavior: the toric ideal associated to any general matrix can be encoded by that of a $0/1$ matrix, while preserving the essential combinatorics of the original ideal. We provide two universality results about the unboundedness of degrees of various generating sets: minimal, Graver, universal Grobner bases, and indispensable binomials. Finally, we provide a polarization-type operation for arbitrary positively graded toric ideals, which preserves all the combinatorial signatures and the homological properties of the original toric ideal.
Let $I_G$ be the toric ideal of a graph $G$. We characterize in graph theoretical terms the primitive, the minimal, the indispensable and the fundamental binomials of the toric ideal $I_G$.