Do you want to publish a course? Click here

Magnetization relaxation and search for the magnetic gap in bulk-insulating V-doped (Bi, Sb)$_2$Te$_3$

109   0   0.0 ( 0 )
 Added by Emile Rienks
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

V-doped (Bi,Sb)$_2$Te$_3$ has a ten times higher magnetic coercivity than its Cr-doped counterpart and therefore is believed to be a superior system for the quantum anomalous Hall effect (QAHE). The QAHE requires the opening of a magnetic band gap at the Dirac point. We do not find this gap by angle-resolved photoelectron spectroscopy down to 1 K. By x-ray magnetic circular dichroism (XMCD) we directly probe the magnetism at the V site and in zerofield. Hysteresis curves of the XMCD signal show a strong dependence of the coercivity on the ramping velocity of the magnetic field. The XMCD signal decays on a time scale of minutes which we conclude contributes to the absence of a detectable magnetic gap at the Dirac point.



rate research

Read More

The ferromagnetic topological insulator V:(Bi,Sb)$_2$Te$_3$ has been recently reported as a quantum anomalous Hall (QAH) system. Yet the microscopic origins of the QAH effect and the ferromagnetism remain unclear. One key aspect is the contribution of the V atoms to the electronic structure. Here the valence band of V:(Bi,Sb)$_2$Te$_3$ thin films was probed in an element-specific way by resonant photoemission spectroscopy. The signature of the V $3d$ impurity band was extracted, and exhibits a high density of states near Fermi level. First-principles calculations support the experimental results and indicate the coexistence of ferromagnetic superexchange and double exchange interactions. The observed impurity band is thus expected to contribute to the ferromagnetism via the interplay of different mechanisms.
The bulk band structure of Bi$_2$Te$_3$ has been determined by angle-resolved photoemission spectroscopy and compared to first-principles calculations. We have performed calculations using the local density approximation (LDA) of density functional theory and the one-shot $GW$ approximation within the all-electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of bite~when compared to LDA. Experimental and calculated results are compared in the spectral regions where distinct differences between the LDA and $GW$ results are present. Overall a superior agreement with $GW$ is found, highlighting the importance of many-body effects in the band structure of this family of topological insulators.
We propose a hole-induced mechanism of spin-polarized current generation by circularly polarized synchrotron radiation and corresponding induced magnetization in magnetically-doped topological insulators Bi$_{1.37}$V$_{0.03}$Sb$_{0.6}$Te$_2$Se. Considered spin-polarized current is generated due to the spin-dependent depopulation of the Dirac cone topological surface states at the Fermi level and subsequent compensation of the generated holes. We have found experimentally and theoretically a relation between the generated spin-polarized current and the shift of the electrochemical potential. The out-of-plane magnetization induced by circularly polarized synchrotron radiation and its inversion with switching the direction of circular polarization were experimentally shown and theoretically confirmed.
Three-dimensional topological insulators (3D-TIs) possess a specific topological order of electronic bands, resulting in gapless surface states via bulk-edge correspondence. Exotic phenomena have been realized in ferromagnetic TIs, such as the quantum anomalous Hall (QAH) effect with a chiral edge conduction and a quantized value of the Hall resistance ${R_{yx}}$. Here, we report on the emergence of distinct topological phases in paramagnetic Fe-doped (Bi,Sb)${_2}$Se${_3}$ heterostructures with varying structure architecture, doping, and magnetic and electric fields. Starting from a 3D-TI, a two-dimensional insulator appears at layer thicknesses below a critical value, which turns into an Anderson insulator for Fe concentrations sufficiently large to produce localization by magnetic disorder. With applying a magnetic field, a topological transition from the Anderson insulator to the QAH state occurs, which is driven by the formation of an exchange gap owing to a giant Zeeman splitting and reduced magnetic disorder. Topological phase diagram of (Bi,Sb)${_2}$Se${_3}$ allows exploration of intricate interplay of topological protection, magnetic disorder, and exchange splitting.
Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provides quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point but all attempts to observe it directly have been unsuccessful. The gap size is considered crucial to overcoming the present limitations of the QAHE, which so far occurs only at temperatures one to two orders of magnitude below its principle limit set by the ferromagnetic Curie temperature $T_C$. Here, we use low temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi$_2$Te$_3$ films, which is present only below $T_C$. Surprisingly, the gap turns out to be $sim$90 meV wide, which not only exceeds $k_BT$ at room temperature but is also 5 times larger than predicted by density functional theory. By an exhaustive multiscale structure characterization we show that this enhancement is due to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, it forms an alternating sequence of septuple and quintuple layer blocks, where Mn is predominantly incorporated in the septuple layers. This self-organized heterostructure substantially enhances the wave-function overlap and the size of the magnetic gap at the Dirac point, as recently predicted. Mn-doped Bi$_2$Se$_3$ forms a similar heterostructure, however, only a large, nonmagnetic gap is formed. We explain both differences based on the higher spin-orbit interaction in Bi$_2$Te$_3$ with the most important consequence of a magnetic anisotropy perpendicular to the films, whereas for Bi$_2$Se$_3$ the spin-orbit interaction it is too weak to overcome the dipole-dipole interaction. Our findings provide crucial insights for pushing the lossless transport properties of topological insulators towards room-temperature applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا