Do you want to publish a course? Click here

Free energy fluctuations of the $2$-spin spherical SK model at critical temperature

104   0   0.0 ( 0 )
 Added by Benjamin Landon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the fluctuations of the free energy of the $2$-spin spherical Sherrington-Kirkpatrick model at critical temperature $beta_c = 1$. When $beta = 1$ we find asymptotic Gaussian fluctuations with variance $frac{1}{6N^2} log(N)$, confirming in the spherical case a physics prediction for the SK model with Ising spins. We furthermore prove the existence of a critical window on the scale $beta = 1 +alpha sqrt{ log(N) } N^{-1/3}$. For any $alpha in mathbb{R}$ we show that the fluctuations are at most order $sqrt{ log(N) } / N$, in the sense of tightness. If $ alpha to infty$ at any rate as $N to infty$ then, properly normalized, the fluctuations converge to the Tracy-Widom$_1$ distribution. If $ alpha to 0$ at any rate as $N to infty$ or $ alpha <0$ is fixed, the fluctuations are asymptotically Gaussian as in the $alpha=0$ case. In determining the fluctuations, we apply a recent result of Lambert and Paquette on the behavior of the Gaussian-$beta$-ensemble at the spectral edge.



rate research

Read More

We describe the fluctuations of the overlap between two replicas in the 2-spin spherical SK model about its limiting value in the low temperature phase. We show that the fluctuations are of order $N^{-1/3}$ and are given by a simple, explicit function of the eigenvalues of a matrix from the Gaussian Orthogonal Ensemble. We show that this quantity converges and describe its limiting distribution in terms of the Airy1random point field (i.e., the joint limit of the extremal eigenvalues of the GOE) from random matrix theory.
We present an elementary approach to the order of fluctuations for the free energy in the Sherrington-Kirkpatrick mean field spin glass model at and near the critical temperature. It is proved that at the critical temperature the variance of the free energy is of $O((log N)^2).$ In addition, we show that if one approaches the critical temperature from the low temperature regime at the rate $O(N^{-alpha})$ for some $alpha>0,$ then the variance is of $O((log N)^2+N^{1-alpha}).$
We analyze the fluctuations of the free energy, replica overlaps, and overlap with the magnetic fields in the quadratic spherial SK model with a vanishing magnetic field. We identify several different behaviors for these quantities depending on the size of the magnetic field, confirming predictions by Fyodorov-Le Doussal and recent work of Baik, Collins-Wildman, Le Doussal and Wu.
We consider the mixed $p$-spin mean-field spin glass model with Ising spins and investigate its free energy in the spirit of the TAP approach, named after Thouless, Anderson, and Palmer. More precisely, we define and compute the generalized TAP correction, and establish the corresponding generalized TAP representation for the free energy. In connection with physicists replica theory, we introduce the notion of generalized TAP states, which are the maximizers of the generalized TAP free energy, and show that their order parameters match the order parameter of the ancestor states in the Parisi ansatz. We compute the critical point equations of the TAP free energy that generalize the classical TAP equations for pure states. Furthermore, we give an exact description of the region where the generalized TAP correction is replica symmetric, in which case it coincides with the classical TAP correction, and show that Plefkas condition is necessary for this to happen. In particular, our result shows that the generalized TAP correction is not always replica symmetric on the points corresponding to the Edwards-Anderson parameter.
In a recent paper [14], we developed the generalized TAP approach for mixed $p$-spin models with Ising spins at positive temperature. Here we extend these results in two directions. We find a simplified representation for the energy of the generalized TAP states in terms of the Parisi measure of the model and, in particular, show that the energy of all states at a given distance from the origin is the same. Furthermore, we prove the analogues of the positive temperature results at zero temperature, which concern the ground-state energy and the organization of ground-state configurations in space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا