Do you want to publish a course? Click here

The {L}ojasiewicz exponent of non-degenerate surface singularities

55   0   0.0 ( 0 )
 Added by Szymon Brzostowski
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $f$ be an isolated singularity at the origin of $mathbb{C}^n$. One of many invariants that can be associated with $f$ is its {L}ojasiewicz exponent $mathcal{L}_0 (f)$, which measures, to some extent, the topology of $f$. We give, for generic surface singularities $f$, an effective formula for $mathcal{L}_0 (f)$ in terms of the Newton polyhedron of $f$. This is a realization of one of Arnolds postulates.



rate research

Read More

We characterize plane curve germes non-degenerate in Kouchnirenkos sense in terms of characteristics and intersection multiplicities of branches.
In his groundbreaking work on classification of singularities with regard to right and stable equivalence of germs, Arnold has listed normal forms for all isolated hypersurface singularities over the complex numbers with either modality less than or equal to two or Milnor number less than or equal to 16. Moreover, he has described an algorithmic classifier, which determines the type of a given such singularity. In the present paper, we extend Arnolds work to a large class of singularities which is unbounded with regard to modality and Milnor number. We develop an algorithmic classifier, which determines a normal form for any singularity with corank less than or equal to two which is equivalent to a germ with non-degenerate Newton boundary in the sense of Kouchnirenko. In order to realize the classifier, we prove a normal form theorem: Suppose K is a mu-constant stratum of the jet space which contains a germ with a non-degenerate Newton boundary. We first observe that all germs in K are equivalent to some germ with the same fixed non-degenerate Newton boundary. We then prove that all right-equivalence classes of germs in K can be covered by a single normal form obtained from a regular basis of an appropriately chosen special fiber. All algorithms are implemented in the library arnold.lib for the computer algebra system Singular.
We give a version in characteristic $p>0$ of Mumfords theorem characterizing a smooth complex germ of surface $(X,x)$ by the triviality of the topological fundamental group of $U=Xsetminus {x}$. This note relies on discussions the authors had during the Christmas break 2009/10 in Ivry. They have been written down by Hel`ene in the night when Eckart died, as a despaired sign of love.
We characterize sandwiched singularities in terms of their link in two different settings. We first prove that such singularities are precisely the normal surface singularities having self-similar non-archimedean links. We describe this self-similarity both in terms of Berkovich analytic geometry and of the combinatorics of weighted dual graphs. We then show that a complex surface singularity is sandwiched if and only if its complex link can be embedded in a Kato surface in such a way that its complement remains connected.
We explicitly describe infintesimal deformations of cyclic quotient singularities that satisfy one of the deformation conditions introduced by Wahl, Kollar-Shepherd-Barron and Viehweg. The conclusion is that in many cases these three notions are different from each other. In particular, we see that while the KSB and the Viehw
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا