Do you want to publish a course? Click here

The End of Galaxy Surveys

133   0   0.0 ( 0 )
 Added by Jason Dennis Rhodes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

For nearly a century, imaging and spectroscopic surveys of galaxies have given us information about the contents of the universe. We attempt to define the logical endpoint of such surveys by defining not the next galaxy survey, but the final galaxy survey at NIR wavelengths; this would be the galaxy survey that exhausts the information content useful for addressing extant questions. Such a survey would require incredible advances in a number of technologies and the survey details will depend on the as yet poorly constrained properties of the earliest galaxies. Using an exposure time calculator, we define nominal surveys for extracting the useful information for three science cases: dark energy cosmology, galaxy evolution, and supernovae. We define scaling relations that trade off sky background, telescope aperture, and focal plane size to allow for a survey of a given depth over a given area. For optimistic assumptions, a 280m telescope with a marginally resolved focal plane of 20 deg$^2$ operating at L2 could potentially exhaust the cosmological information content of galaxies in a 10 year survey. For galaxy evolution (making use of gravitational lensing to magnify the earliest galaxies) and SN, the same telescope would suffice. We discuss the technological advances needed to complete the last galaxy survey. While the final galaxy survey remains well outside of our technical reach today, we present scaling relations that show how we can progress toward the goal of exhausting the information content encoded in the shapes, positions, and colors of galaxies.



rate research

Read More

265 - D. Lutz 2014
Roughly half of the radiation from evolving galaxies in the early universe reaches us in the far-infrared and submillimeter wavelength range. Recent major advances in observing capabilities, in particular the launch of the Herschel Space Observatory in 2009, have dramatically enhanced our ability to use this information in the context of multiwavelength studies of galaxy evolution. Near its peak, three quarters of the cosmic infrared background is now resolved into individually detected sources. The use of far-infrared diagnostics of dust-obscured star formation and of interstellar medium conditions has expanded from rare extreme high-redshift galaxies to more typical main sequence galaxies and hosts of active galactic nuclei, out to z>~2. These studies shed light on the evolving role of steady equilibrium processes and of brief starbursts, at and since the peak of cosmic star formation and black hole accretion. This review presents a selection of recent far-infrared studies of galaxy evolution, with an emphasis on Herschel results
We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (~40deg$^2$), which combines a slitless spectroscopic survey limited at H$alpha$ flux $geq5times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ and a photometric survey limited in H-band ($Hleq26$). We use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius from 1 to 10 h$^{-1}$Mpc over the redshift range 0.9<z<1.8. We compare this density field with the one computed in a mock catalogue with the same depth as the Euclid Deep survey (H=26) but without redshift measurement errors. We find that our method successfully separates high from low density environments (the last from the first quintile of the density distribution), with higher efficiency at low redshift and large cell: the fraction of low density regions mistaken by high density peaks is <1% for all scales and redshifts explored, but for scales of 1 h$^{-1}$Mpc for which is a few percent. These results show that we can efficiently study environment in photometric samples if spectroscopic information is available for a smaller sample of objects that sparsely samples the same volume. We demonstrate that these studies are possible in the Euclid Deep survey, i.e. in a redshift range in which environmental effects are different from those observed in the local universe, hence providing new constraints for galaxy evolution models.
111 - B. Nord , A. Amara , A. Refregier 2016
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherent data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). We discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.
Knowledge of the number density of H$alpha$ emitting galaxies is vital for assessing the scientific impact of the Euclid and WFIRST missions. In this work we present predictions from a galaxy formation model, Galacticus, for the cumulative number counts of H$alpha$-emitting galaxies. We couple Galacticus to three different dust attenuation methods and examine the counts using each method. A $chi^2$ minimisation approach is used to compare the model predictions to observed galaxy counts and calibrate the dust parameters. We find that weak dust attenuation is required for the Galacticus counts to be broadly consistent with the observations, though the optimum dust parameters return large values for $chi^2$, suggesting that further calibration of Galacticus is necessary. The model predictions are also consistent with observed estimates for the optical depth and the H$alpha$ luminosity function. Finally we present forecasts for the redshift distributions and number counts for two Euclid-like and one WFIRST-like survey. For a Euclid-like survey with redshift range $0.9leqslant zleqslant 1.8$ and H$alpha+{rm [NII]}$ blended flux limit of $2times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 3900--4800 galaxies per square degree. For a WFIRST-like survey with redshift range $1leqslant zleqslant 2$ and blended flux limit of $1times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 10400--15200 galaxies per square degree.
The mutually complementary Euclid and Roman galaxy redshift surveys will use Halpha- and [OIII]-selected emission line galaxies as tracers of the large scale structure at $0.9 lesssim z lesssim 1.9$ (Halpha) and $1.5 lesssim z lesssim 2.7$ ([OIII]). It is essential to have a reliable and sufficiently precise knowledge of the expected numbers of Halpha-emitting galaxies in the survey volume in order to optimize these redshift surveys for the study of dark energy. Additionally, these future samples of emission-line galaxies will, like all slitless spectroscopy surveys, be affected by a complex selection function that depends on galaxy size and luminosity, line equivalent width, and redshift errors arising from the misidentification of single emission-line galaxies. Focusing on the specifics of the Euclid survey, we combine two slitless spectroscopic WFC3-IR datasets -- 3D-HST+AGHAST and the WISP survey -- to construct a Euclid-like sample that covers an area of 0.56 deg$^2$ and includes 1277 emission line galaxies. We detect 1091 ($sim$3270 deg$^{-2}$) Halpha+[NII]-emitting galaxies in the range $0.9leq z leq 1.6$ and 162 ($sim$440 deg$^{-2}$) [OIII]$lambda$5007-emitters over $1.5leq z leq 2.3$ with line fluxes $geq 2 times 10^{-16}$ erg s$^{-1}$ cm$^{-2}$. The median of the Halpha+[NII] equivalent width distribution is $sim$250r{A}, and the effective radii of the continuum and Halpha+[NII] emission are correlated with a median of $sim$0.38 and significant scatter ($sigma sim $0.2$-$0.35). Finally, we explore the prevalence of redshift misidentification in future Euclid samples, finding potential contamination rates of $sim$14-20% and $sim$6% down to $2times 10^{-16}$ and $6 times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$, respectively, though with increased wavelength coverage these percentages drop to nearly zero.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا