Do you want to publish a course? Click here

Approximate Bacon-Shor Code and Holography

112   0   0.0 ( 0 )
 Added by ChunJun Cao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approxima



rate research

Read More

A Bacon-Shor code is a subsystem quantum error-correcting code on an $L times L$ lattice where the $2(L-1)$ weight-$2L$ stabilizers are usually inferred from the measurements of $(L-1)^2$ weight-2 gauge operators. Here we show that the stabilizers can be measured directly and fault tolerantly with bare ancillary qubits by constructing circuits that follow the pattern of gauge operators. We then examine the implications of this method for small quantum error-correcting codes by comparing distance
114 - John Napp , John Preskill 2012
We study the performance of Bacon-Shor codes, quantum subsystem codes which are well suited for applications to fault-tolerant quantum memory because the error syndrome can be extracted by performing two-qubit measurements. Assuming independent noise, we find the optimal block size in terms of the bit-flip error probability p_X and the phase error probability p_Z, and determine how the probability of a logical error depends on p_X and p_Z. We show that a single Bacon-Shor code block, used by itself without concatenation, can provide very effective protection against logical errors if the noise is highly biased (p_Z / p_X >> 1) and the physical error rate p_Z is a few percent or below. We also derive an upper bound on the logical error rate for the case where the syndrome data is noisy.
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.
We provide a numerical investigation of two families of subsystem quantum codes that are related to hypergraph product codes by gauge-fixing. The first family consists of the Bravyi-Bacon-Shor (BBS) codes which have optimal code parameters for subsystem quantum codes local in 2-dimensions. The second family consists of the constant rate generalized Shor codes of Bacon and Cassicino cite{bacon2006quantum}, which we re-brand as subsystem hypergraph product (SHP) codes. We show that any hypergraph product code can be obtained by entangling the gauge qubits of two SHP codes. To evaluate the performance of these codes, we simulate both small and large examples. For circuit noise, a $[[21,4,3]]$ BBS code and a $[[49,16,3]]$ SHP code have pseudthresholds of $2times10^{-3}$ and $8times10^{-4}$, respectively. Simulations for phenomenological noise show that large BBS and SHP codes start to outperform surface codes with similar encoding rate at physical error rates $1times 10^{-6}$ and $4times10^{-4}$, respectively.
349 - Ning Bao , Illan F. Halpern 2018
In this work we generalize the entanglement of purification and its conjectured holographic dual to conditional and multiparti
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا