Do you want to publish a course? Click here

Predicting Clinical Trial Results by Implicit Evidence Integration

84   0   0.0 ( 0 )
 Added by Qiao Jin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Clinical trials provide essential guidance for practicing Evidence-Based Medicine, though often accompanying with unendurable costs and risks. To optimize the design of clinical trials, we introduce a novel Clinical Trial Result Prediction (CTRP) task. In the CTRP framework, a model takes a PICO-formatted clinical trial proposal with its background as input and predicts the result, i.e. how the Intervention group compares with the Comparison group in terms of the measured Outcome in the studied Population. While structured clinical evidence is prohibitively expensive for manual collection, we exploit large-scale unstructured sentences from medical literature that implicitly contain PICOs and results as evidence. Specifically, we pre-train a model to predict the disentangled results from such implicit evidence and fine-tune the model with limited data on the downstream datasets. Experiments on the benchmark Evidence Integration dataset show that the proposed model outperforms the baselines by large margins, e.g., with a 10.7% relative gain over BioBERT in macro-F1. Moreover, the performance improvement is also validated on another dataset composed of clinical trials related to COVID-19.

rate research

Read More

Clinical trials predicate subject eligibility on a diversity of criteria ranging from patient demographics to food allergies. Trials post their requirements as semantically complex, unstructured free-text. Formalizing trial criteria to a computer-interpretable syntax would facilitate eligibility determination. In this paper, we investigate an information extraction (IE) approach for grounding criteria from trials in ClinicalTrials(dot)gov to a shared knowledge base. We frame the problem as a novel knowledge base population task, and implement a solution combining machine learning and context free grammar. To our knowledge, this work is the first criteria extraction system to apply attention-based conditional random field architecture for named entity recognition (NER), and word2vec embedding clustering for named entity linking (NEL). We release the resources and core components of our system on GitHub at https://github.com/facebookresearch/Clinical-Trial-Parser. Finally, we report our per module and end to end performances; we conclude that our system is competitive with Criteria2Query, which we view as the current state-of-the-art in criteria extraction.
FDA has been promoting enrollment practices that could enhance the diversity of clinical trial populations, through broadening eligibility criteria. However, how to broaden eligibility remains a significant challenge. We propose an AI approach to Cohort Optimization (AICO) through transformer-based natural language processing of the eligibility criteria and evaluation of the criteria using real-world data. The method can extract common eligibility criteria variables from a large set of relevant trials and measure the generalizability of trial designs to real-world patients. It overcomes the scalability limits of existing manual methods and enables rapid simulation of eligibility criteria design for a disease of interest. A case study on breast cancer trial design demonstrates the utility of the method in improving trial generalizability.
The best evidence concerning comparative treatment effectiveness comes from clinical trials, the results of which are reported in unstructured articles. Medical experts must manually extract information from articles to inform decision-making, which is time-consuming and expensive. Here we consider the end-to-end task of both (a) extracting treatments and outcomes from full-text articles describing clinical trials (entity identification) and, (b) inferring the reported results for the former with respect to the latter (relation extraction). We introduce new data for this task, and evaluate models that have recently achieved state-of-the-art results on similar tasks in Natural Language Processing. We then propose a new method motivated by how trial results are typically presented that outperforms these purely data-driven baselines. Finally, we run a fielded evaluation of the model with a non-profit seeking to identify existing drugs that might be re-purposed for cancer, showing the potential utility of end-to-end evidence extraction systems.
The volume of stroke lesion is the gold standard for predicting the clinical outcome of stroke patients. However, the presence of stroke lesion may cause neural disruptions to other brain regions, and these potentially damaged regions may affect the clinical outcome of stroke patients. In this paper, we introduce the tractographic feature to capture these potentially damaged regions and predict the modified Rankin Scale (mRS), which is a widely used outcome measure in stroke clinical trials. The tractographic feature is built from the stroke lesion and average connectome information from a group of normal subjects. The tractographic feature takes into account different functional regions that may be affected by the stroke, thus complementing the commonly used stroke volume features. The proposed tractographic feature is tested on a public stroke benchmark Ischemic Stroke Lesion Segmentation 2017 and achieves higher accuracy than the stroke volume and the state-of-the-art feature on predicting the mRS grades of stroke patients. In addition, the tractographic feature also yields a lower average absolute error than the commonly used stroke volume feature.
Common language models typically predict the next word given the context. In this work, we propose a method that improves language modeling by learning to align the given context and the following phrase. The model does not require any linguistic annotation of phrase segmentation. Instead, we define syntactic heights and phrase segmentation rules, enabling the model to automatically induce phrases, recognize their task-specific heads, and generate phrase embeddings in an unsupervised learning manner. Our method can easily be applied to language models with different network architectures since an independent module is used for phrase induction and context-phrase alignment, and no change is required in the underlying language modeling network. Experiments have shown that our model outperformed several strong baseline models on different data sets. We achieved a new state-of-the-art performance of 17.4 perplexity on the Wikitext-103 dataset. Additionally, visualizing the outputs of the phrase induction module showed that our model is able to learn approximate phrase-level structural knowledge without any annotation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا