No Arabic abstract
Strong-field methods in solids enable new strategies for ultrafast nonlinear spectroscopy and provide all-optical insights into the electronic properties of condensed matter in reciprocal and real space. Additionally, solid-state media offers unprecedented possibilities to control high-harmonic generation using modified targets or tailored excitation fields. Here we merge these important points and demonstrate circularly-polarized high-harmonic generation with polarization-matched excitation fields for spectroscopy of chiral electronic properties at surfaces. The sensitivity of our approach is demonstrated for structural helicity and termination-mediated ferromagnetic order at the surface of silicon-dioxide and magnesium oxide, respectively. Circularly polarized radiation emanating from a solid sample now allows to add basic symmetry properties as chirality to the arsenal of strong-field spectroscopy in solids. Together with its inherent temporal (femtosecond) resolution and non-resonant broadband spectrum, the polarization control of high harmonics from condensed matter can illuminate ultrafast and strong field dynamics of surfaces, buried layers or thin films.
Highly nonlinear optical phenomena can provide access to properties of electronic systems which are otherwise difficult to access through conventional linear optical spectroscopies. In particular, high harmonic generation (HHG) in crystalline solids is strikingly different from that in atomic gases, and it enables us to access electronic properties such as the band structure, Berry curvature, and valence electron density. Here, we show that polarization-resolved HHG measurements can be used to probe the transition dipole moment (TDM) texture in momentum space in two dimensional semiconductors. TDM is directly related to the internal structure of the electronic system and governs the optical properties. We study HHG in black phosphorus, which offers a simple two-band system, with bandgap resonant excitation. We observed a unique crystal-orientation dependence of the HHG yields and polarizations and succeeded in reconstructing the TDM texture related to the inter-atomic bonding structure. Our results demonstrate the potential of high harmonic spectroscopy for probing electronic wavefunctions in crystalline solids.
With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet (XUV) sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution - which is highly desirable for many TR-ARPES studies - while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity (fsEC), realizing a practical source for TR-ARPES that achieves a flux of over 10$^{11}$ photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe$_2$, as well as TR-ARPES studies on graphite.
Strong field driven electric currents in condensed matter systems open new frontiers in petahertz electronics. In this regime new challenges arise as the role of the band structure and the quantum nature of electron-hole dynamics have yet to be resolved. Here we reveal the underlying attosecond dynamics that dictates the temporal evolution of carriers in multi-band solid state systems, via high harmonic generation (HHG) spectroscopy. We demonstrate that when the electron-hole relative velocity approaches zero, enhanced quantum interference leads to the appearance of spectral caustics in the HHG spectrum. Introducing the role of the dynamical joint density of states (JDOS) we identify its direct mapping into the spectrum, exhibiting singularities at the spectral caustics. By probing these singularities, we visualize the structure of multiple unpopulated high conduction bands. Our results open a new path in the control and study of attosecond quasi-particle interactions within the field dressed band structure of crystals.
As a promising avenue to obtain new extreme ultraviolet light source and detect electronic properties, high harmonic generation (HHG) has been actively developed both theoretically and experimentally. In solids lacking inversion symmetry, when electrons undergo a nonadiabatic transition, a directional charge shift occurs and is characterized by shift vector, which measures the real-space shift of the photoexcited electron and hole. We have revealed that shift vector plays prominent roles in the three-step model of real-space tunneling mechanism for electrons under strong laser fields. Since shift vector is determined by the topological properties of related wavefunctions, we expect HHG with its contribution can provid direct knowledge on the band topology in noncentrosymmetric topological insulators (TIs). In both Kane-Mele model and realistic material BiTeI, we have found that the shift vector reverses when band inversion happens during the topological phase transition between normal and topological insulators. Under strong laser fields, the reverse of shift vector leads to the sign change of HHG tropisms to the polarization direction of the laser field. This makes HHG a feasible all-optical strong-field method to directly identify the band inversion in non-centrosymmetric TIs.
We demonstrate a polarization rotator integrated at the output of a GaAs waveguide producing type I second harmonic generation (SHG). Form-birefringent phase matching between the pump fundamental transverse electric (TE) mode near 2.0 $mu$m wavelength and the signal fundamental transverse magnetic (TM) mode efficiently generates light at 1.0 $mu$m wavelength. A SiN waveguide layer is integrated with the SHG device to form a multi-functional photonic integrated circuit. The polarization rotator couples light between the two layers and rotates the polarization from TM to TE or from TE to TM. With a TE-polarized 2.0 $mu$m pump, type I SHG is demonstrated with the signal rotated to TE polarization. Passive transmission near 1.0 $mu$m wavelength shows ~80 % polarization rotation across a broad bandwidth of ~100 nm. By rotating the signal polarization to match that of the pump, this SHG device demonstrates a critical component of an integrated self-referenced octave-spanning frequency comb. This device is expected to provide crucial functionality as part of a fully integrated optical frequency synthesizer with resolution of less than one part in 10$^{14}$.