Do you want to publish a course? Click here

Scene Gated Social Graph: Pedestrian Trajectory Prediction Based on Dynamic Social Graphs and Scene Constraints

59   0   0.0 ( 0 )
 Added by Hao Xue
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Pedestrian trajectory prediction is valuable for understanding human motion behaviors and it is challenging because of the social influence from other pedestrians, the scene constraints and the multimodal possibilities of predicted trajectories. Most existing methods only focus on two of the above three key elements. In order to jointly consider all these elements, we propose a novel trajectory prediction method named Scene Gated Social Graph (SGSG). In the proposed SGSG, dynamic graphs are used to describe the social relationship among pedestrians. The social and scene influences are taken into account through the scene gated social graph features which combine the encoded social graph features and semantic scene features. In addition, a VAE module is incorporated to learn the scene gated social feature and sample latent variables for generating multiple trajectories that are socially and environmentally acceptable. We compare our SGSG against twenty state-of-the-art pedestrian trajectory prediction methods and the results show that the proposed method achieves superior performance on two widely used trajectory prediction benchmarks.



rate research

Read More

Better machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interaction with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.
192 - Xiaotian Yu , Hanling Yi , Yi Yu 2021
There has been a recent surge of research interest in attacking the problem of social relation inference based on images. Existing works classify social relations mainly by creating complicated graphs of human interactions, or learning the foreground and/or background information of persons and objects, but ignore holistic scene context. The holistic scene refers to the functionality of a place in images, such as dinning room, playground and office. In this paper, by mimicking human understanding on images, we propose an approach of textbf{PR}actical textbf{I}nference in textbf{S}ocial rtextbf{E}lation (PRISE), which concisely learns interactive features of persons and discriminative features of holistic scenes. Technically, we develop a simple and fast relational graph convolutional network to capture interactive features of all persons in one image. To learn the holistic scene feature, we elaborately design a contrastive learning task based on image scene classification. To further boost the performance in social relation inference, we collect and distribute a new large-scale dataset, which consists of about 240 thousand unlabeled images. The extensive experimental results show that our novel learning framework significantly beats the state-of-the-art methods, e.g., PRISE achieves 6.8$%$ improvement for domain classification in PIPA dataset.
Pedestrian trajectory prediction in urban scenarios is essential for automated driving. This task is challenging because the behavior of pedestrians is influenced by both their own history paths and the interactions with others. Previous research modeled these interactions with pooling mechanisms or aggregating with hand-crafted attention weights. In this paper, we present the Social Interaction-Weighted Spatio-Temporal Convolutional Neural Network (Social-IWSTCNN), which includes both the spatial and the temporal features. We propose a novel design, namely the Social Interaction Extractor, to learn the spatial and social interaction features of pedestrians. Most previous works used ETH and UCY datasets which include five scenes but do not cover urban traffic scenarios extensively for training and evaluation. In this paper, we use the recently released large-scale Waymo Open Dataset in urban traffic scenarios, which includes 374 urban training scenes and 76 urban testing scenes to analyze the performance of our proposed algorithm in comparison to the state-of-the-art (SOTA) models. The results show that our algorithm outperforms SOTA algorithms such as Social-LSTM, Social-GAN, and Social-STGCNN on both Average Displacement Error (ADE) and Final Displacement Error (FDE). Furthermore, our Social-IWSTCNN is 54.8 times faster in data pre-processing speed, and 4.7 times faster in total test speed than the current best SOTA algorithm Social-STGCNN.
We consider the problem of predicting the future path of a pedestrian using its motion history and the motion history of the surrounding pedestrians, called social information. Since the seminal paper on Social-LSTM, deep-learning has become the main tool used to model the impact of social interactions on a pedestrians motion. The demonstration that these models can learn social interactions relies on an ablative study of these models. The models are compared with and without their social interactions module on two standard metrics, the Average Displacement Error and Final Displacement Error. Yet, these complex models were recently outperformed by a simple constant-velocity approach. This questions if they actually allow to model social interactions as well as the validity of the proof. In this paper, we focus on the deep-learning models with a soft-attention mechanism for social interaction modeling and study whether they use social information at prediction time. We conduct two experiments across four state-of-the-art approaches on the ETH and UCY datasets, which were also used in previous work. First, the models are trained by replacing the social information with random noise and compared to model trained with actual social information. Second, we use a gating mechanism along with a $L_0$ penalty, allowing models to shut down their inner components. The models consistently learn to prune their soft-attention mechanism. For both experiments, neither the course of the convergence nor the prediction performance were altered. This demonstrates that the soft-attention mechanism and therefore the social information are ignored by the models.
Recent implicit neural rendering methods have demonstrated that it is possible to learn accurate view synthesis for complex scenes by predicting their volumetric density and color supervised solely by a set of RGB images. However, existing methods are restricted to learning efficient representations of static scenes that encode all scene objects into a single neural network, and lack the ability to represent dynamic scenes and decompositions into individual scene objects. In this work, we present the first neural rendering method that decomposes dynamic scenes into scene graphs. We propose a learned scene graph representation, which encodes object transformation and radiance, to efficiently render novel arrangements and views of the scene. To this end, we learn implicitly encoded scenes, combined with a jointly learned latent representation to describe objects with a single implicit function. We assess the proposed method on synthetic and real automotive data, validating that our approach learns dynamic scenes -- only by observing a video of this scene -- and allows for rendering novel photo-realistic views of novel scene compositions with unseen sets of objects at unseen poses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا