Do you want to publish a course? Click here

Do Language Embeddings Capture Scales?

154   0   0.0 ( 0 )
 Added by Xikun Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense, and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We show that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance and show that a simple method of canonicalizing numbers can have a significant effect on the results.



rate research

Read More

Several variants of deep neural networks have been successfully employed for building parametric models that project variable-duration spoken word segments onto fixed-size vector representations, or acoustic word embeddings (AWEs). However, it remains unclear to what degree we can rely on the distance in the emerging AWE space as an estimate of word-form similarity. In this paper, we ask: does the distance in the acoustic embedding space correlate with phonological dissimilarity? To answer this question, we empirically investigate the performance of supervised approaches for AWEs with different neural architectures and learning objectives. We train AWE models in controlled settings for two languages (German and Czech) and evaluate the embeddings on two tasks: word discrimination and phonological similarity. Our experiments show that (1) the distance in the embedding space in the best cases only moderately correlates with phonological distance, and (2) improving the performance on the word discrimination task does not necessarily yield models that better reflect word phonological similarity. Our findings highlight the necessity to rethink the current intrinsic evaluations for AWEs.
117 - Yu-An Wang , Yun-Nung Chen 2020
In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attention. Embedding the position information in the self-attention mechanism is also an indispensable factor in Transformers however is often discussed at will. Therefore, this paper carries out an empirical study on position embeddings of mainstream pre-trained Transformers, which mainly focuses on two questions: 1) Do position embeddings really learn the meaning of positions? 2) How do these different learned position embeddings affect Transformers for NLP tasks? This paper focuses on providing a new insight of pre-trained position embeddings through feature-level analysis and empirical experiments on most of iconic NLP tasks. It is believed that our experimental results can guide the future work to choose the suitable positional encoding function for specific tasks given the application property.
Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of social stereotypes. Specifically, we propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) models unethical behavior by communicating context-specific principles of ethics and equity to it. To this end, we build upon recent methods for quantifying a systems social stereotypes, augmenting them with different kinds of ethical interventions and the desired model behavior under such interventions. Our zero-shot evaluation finds that even todays powerful neural language models are extremely poor ethical-advice takers, that is, they respond surprisingly little to ethical interventions even though these interventions are stated as simple sentences. Few-shot learning improves model behavior but remains far from the desired outcome, especially when evaluated for various types of generalization. Our new task thus poses a novel language understanding challenge for the community.
Predicting chemical properties from the structure of a molecule is of great importance in many applications including drug discovery and material design. Machine learning based molecular property prediction holds the promise of enabling accurate predictions at much less complexity, when compared to, for example Density Functional Theory (DFT) calculations. Features extracted from molecular graphs, using graph neural nets in a supervised manner, have emerged as strong baselines for such tasks. However, the vast chemical space together with the limited availability of labels makes supervised learning challenging, calling for learning a general-purpose molecular representation. Recently, pre-trained transformer-based language models (PTLMs) on large unlabeled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, here we present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer. This model was employed with a linear attention mechanism and highly paralleized training on 1D SMILES sequences of 1.1 billion unlabeled molecules from the PubChem and ZINC datasets. Experiments show that the learned molecular representation performs competitively, when compared to existing graph-based and fingerprint-based supervised learning baselines, on the challenging tasks of predicting properties of QM8 and QM9 molecules. Further task-specific fine-tuning of the MoLFormerr representation improves performance on several of those property prediction benchmarks. These results provide encouraging evidence that large-scale molecular language models can capture sufficient structural information to be able to accurately predict quantum chemical properties and beyond.
Multilingual pretrained language models (MPLMs) exhibit multilinguality and are well suited for transfer across languages. Most MPLMs are trained in an unsupervised fashion and the relationship between their objective and multilinguality is unclear. More specifically, the question whether MPLM representations are language-agnostic or they simply interleave well with learned task prediction heads arises. In this work, we locate language-specific information in MPLMs and identify its dimensionality and the layers where this information occurs. We show that language-specific information is scattered across many dimensions, which can be projected into a linear subspace. Our study contributes to a better understanding of MPLM representations, going beyond treating them as unanalyzable blobs of information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا