Do you want to publish a course? Click here

Azimuthal anisotropy and multiplicities of hard photons and free nucleons in intermediate-energy heavy-ion collisions

401   0   0.0 ( 0 )
 Added by Yu-Gang Ma
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Anisotropic flow can offer significant information of evolution dynamics in heavy-ion collisions. A systematic study of the directed flow $v_1$ and elliptic flow $v_2$ of hard photons and free nucleons is performed for $^{40}$Ca+$^{40}$Ca collisions in a framework of isospin dependent quantum molecular dynamics (IQMD) model. The study firstly reveals that thermal photons emitted in intermediate-energy heavy-ion collisions have the behaviors of directed and elliptic flows. The interesting phenomena of incident energy dependence of $v_1$ and $v_2$ for thermal photons in central collisions also confirmed that it can be regarded as a good probe of evolution dynamics. Moreover, the multiplicities of hard photons and free nucleons and their correlation are also investigated. We find that direct photon emission is positively related to free nucleons emission, however, there exists an anti-correlation for thermal photons with free nucleons.



rate research

Read More

The short-range correlation (SRC) induced by the tensor force in the isosinglet neutron-proton interaction channel leads to a high-momentum tail (HMT) in the single-nucleon momentum distributions n(k) in nuclei. Owing to the remaining uncertainties about the tensor force, the shape of the nucleon HMT may be significantly different from the dilute interacting Fermi gas model prediction $n(k) sim1/k^4$ similar to the HMT in cold atoms near the unitary limit. Within an isospin- and momentum-dependent Boltzmann-Uehling-Uhlenbeck transport model incorporating approximately the nucleon HMT, we investigate hard photon emissions in $^{14}$N+$^{12}$C and $^{48}$Ca+$^{124}$Sn reactions at beam energies around the Fermi energy. Imprints of different shapes of the HMT on the energy spectrum, angular distribution and transverse momentum spectrum of hard photons are studied. While the angular distribution does not carry any information about the shape of the nucleon HMT, the energy spectra and especially the mid-rapidity transverse momentum spectra of hard photons are found to bare strong imprints of the shapes of nucleon HMTs in the two colliding nuclei.
328 - G. H. Liu , Y. G. Ma , X. Z. Cai 2008
Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have presented a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter $F$ and elliptic asymmetry coefficient $v_2$, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive $F$ and negative $v_2$ of direct photons are illustrated and they seem to be anti-correlated to the corresponding free protons flow.
105 - T. Koide , T. Kodama 2016
We investigate the behavior of low energy photons radiated by the deceleration processes of two colliding nuclei in relativistic heavy ion collisions using the Wigner function approach for electromagnetic radiation fields. The angular distribution reveals the information of the initial geometric configurations. Such a property is reflected in the anisotropic parameter $v_{2}$, showing an increasing $v_{2}$ as energy decreases, which is a behavior qualitatively different from $v_{2}$ from hadrons produced in the collisions.
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the matter known as the quark gluon plasma (QGP). A huge amount of sub-nucleonic particles are created in the collision processes and their interaction and subsequent evolution after the collision takes place is at the core of the understanding of the matter that builds up the Universe. It has recently been shown that event-by-event fluctuations in the spatial distribution between different collision events have great impact on the particle distributions that are measured after the evolution of the created system. Specifically, these distributions are greatly responsible for generating the observed azimuthal anisotropy in measurements. Furthermore, the eventual cooling and expansion of the fluctuating system can become very complex due to lumps of energy density and temperature, which affects the interaction of the particles that traverse the medium. In this configuration, heavy flavor particles play a special role, as they are generally created at the initial stages of the process and have properties that allow them to retain memory from the interactions within the whole evolution of the system. However, the comparison between experimental data and theoretical or phenomenological predictions on the heavy flavor sector cannot fully explain the heavy quarks coupling with the medium and their subsequent hadronization process. [Full abstract in file]
The LHC data on azimuthal anisotropy harmonics from PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted in the framework of the HYDJET++ model. The cross-talk of elliptic $v_2$ and triangular $v_3$ flow in the model generates both even and odd harmonics of higher order. Comparison with the experimental data shows that this mechanism is able to reproduce the $p_{rm T}$ and centrality dependencies of quadrangular flow $v_4$, and also the basic trends for pentagonal $v_5$ and hexagonal $v_6$ flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا