Extremely High-Order Convergence in Simulations of Relativistic Stars


Abstract in English

We provide a road towards obtaining gravitational waveforms from inspiraling material binaries with an accuracy viable for third-generation gravitational wave detectors, without necessarily advancing computational hardware or massively-parallel software infrastructure. We demonstrate a proof-of-principle 1+1-dimensional numerical implementation that exhibits up to 7th-order convergence for highly dynamic barotropic stars in curved spacetime, and numerical errors up to 6 orders of magnitude smaller than a standard method. Aside from high-order interpolation errors (Runges phenomenon), there are no obvious fundamental obstacles to obtaining convergence of even higher order. The implementation uses a novel surface-tracking method, where the surface is evolved and high-order accurate boundary conditions are imposed there. Computational memory does not need to be allocated to fluid variables in the vacuum region of spacetime. We anticipate the application of this new method to full $3! +! 1$-dimensional simulations of the inspiral phase of compact binary systems with at least one material body. The additional challenge of a deformable surface must be addressed in multiple spatial dimensions, but it is also an opportunity to input more precise surface tension physics.

Download