Do you want to publish a course? Click here

Near-field imaging of dipole emission modulated by an optical grating

340   0   0.0 ( 0 )
 Added by Dong Hyuk Ko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiphoton-ionized electrons are born into a strong light field that will determine their short-term future. By controlling the infrared beam, we enable atoms or molecules to generate extreme ultraviolet (XUV) pulses and synthesize attosecond pulses - the shortest controlled events ever produced. Here we show that a weak obliquely incident beam imposes an optical grating on the fundamental beam, resulting in a spatially modulated attosecond pulse. We observe the modulation on a spectrally resolved near-field XUV image, encoding all information of the spectral phase of the recollision electron and, therefore, the attosecond pulse produced by structureless atoms. Near-field imaging is an efficient method for measuring the duration of attosecond pulses, especially important for soft X-ray pulses created in helium. For more complex systems, it includes auto ionization and giant plasmon resonances.

rate research

Read More

We report on an all-optical magnetometric technique based on nonlinear magneto-optical rotation with amplitude-modulated light. The method enables sensitive magnetic-field measurements in a broad dynamic range. We demonstrate the sensitivity of $4.3times10^{-9}$ G/$sqrt{text{Hz}}$ at 10 mG and the magnetic field tracking in a range of 40 mG. The fundamental limits of the method sensitivity and factors determining current performance of the magnetometer are discussed.
Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distance when the light localization is strong. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.
A method for diffracting the weak probe beam into unidirectional and higher-order directions is proposed via a novel Rydberg electromagnetically induced grating, providing a new way for the implementations of quantum devices with cold Rydberg atoms. The proposed scheme utilizes a suitable and position-dependent adjustment to the two-photon detuning besides the modulation of the standing-wave coupling field, bringing a in-phase modulation which can change the parity of the dispersion. We observe that when the modulation amplitude is appropriate, a perfect unidirectional diffraction grating can be realized. In addition, due to the mutual effect between the van der Waals (vdWs) interaction and the atom-field interaction length that deeply improves the dispersion of the medium, the probe energy can be counter-intuitively transferred into higher-order diffractions as increasing the vdWs interaction, leading to the realization of a controllable higher-order diffraction grating via strong blockade.
We demonstrate a compact magneto-optical trap (MOT) of alkaline-earth atoms using a nanofabricated diffraction grating chip. A single input laser beam, resonant with the broad $^1$S$_0,rightarrow ,^1$P$_1$ transition of strontium, forms the MOT in combination with three diffracted beams from the grating chip and a magnetic field produced by permanent magnets. A differential pumping tube limits the effect of the heated, effusive source on the background pressure in the trapping region. The system has a total volume of around 2.4 L. With our setup, we have trapped up to $5 times 10^6$ $^{88}$Sr atoms, at a temperature of approximately $6$ mK, and with a trap lifetime of approximately 1 s. Our results will aid the effort to miniaturize optical atomic clocks and other quantum technologies based on alkaline-earth atoms.
We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the rate coefficient on the photoassociation laser intensity, we observe saturation of the photoassociation scattering probability at the unitarity limit in quantitative agreement with the theoretical model by Bohn and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power broadening of the resonance width is measured. We could not observe an intensity dependent light shift in contrast to findings for lithium and rubidium, which is attributed to the absence of a p or d-wave shape resonance in cesium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا