Do you want to publish a course? Click here

Entropy rigidity for foliations by strictly convex projective manifolds

129   0   0.0 ( 0 )
 Added by Alessio Savini
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $N$ be a compact manifold with a foliation $mathscr{F}_N$ whose leaves are compact strictly convex projective manifolds. Let $M$ be a compact manifold with a foliation $mathscr{F}_M$ whose leaves are compact hyperbolic manifolds of dimension bigger than or equal to $3$. Suppose to have a foliation-preserving homeomorphism $f:(N,mathscr{F}_N) rightarrow (M,mathscr{F}_M)$ which is $C^1$-regular when restricted to leaves. In the previous situation there exists a well-defined notion of foliated volume entropies $h(N,mathscr{F}_N)$ and $h(M,mathscr{F}_M)$ and it holds $h(M,mathscr{F}_M) leq h(N,mathscr{F}_N)$. Additionally, if equality holds, then the leaves must be homothetic.



rate research

Read More

This is an expository proof that, if $M$ is a compact $n$-manifold with no boundary, then the set of holonomies of strictly-convex real-projective structures on $M$ is a subset of $operatorname{Hom}(pi_1M,operatorname{PGL}(n+1,mathbb RR))$ that is both open and closed.
We describe several methods to construct minimal foliations by hyperbolic surfaces on closed 3-manifolds, and discuss the properties of the examples thus obtained.
It was proved in cite{NS1} that obstacles $K$ in $R^d$ that are finite disjoint unions of strictly convex domains with $C^3$ boundaries are uniquely determined by the travelling times of billiard trajectories in their exteriors and also by their so called scattering length spectra. However the case $d = 2$ is not properly covered in cite{NS1}. In the present paper we give a separate different proof of the same result in the case $d = 2$.
202 - Fabio S. Souza 2011
We present new open manifolds that are not homeomorphic to leaves of any C^0 codimension one foliation of a compact manifold. Among them are simply connected manifolds of dimension 5 or greater that are non-periodic in homotopy or homology, namely in their 2-dimensional homotopy or homology groups.
A generalized cusp $C$ is diffeomorphic to $[0,infty)$ times a closed Euclidean manifold. Geometrically $C$ is the quotient of a properly convex domain by a lattice, $Gamma$, in one of a family of affine groups $G(psi)$, parameterized by a point $psi$ in the (dual closed) Weyl chamber for $SL(n+1,mathbb{R})$, and $Gamma$ determines the cusp up to equivalence. These affine groups correspond to certain fibered geometries, each of which is a bundle over an open simplex with fiber a horoball in hyperbolic space, and the lattices are classified by certain Bieberbach groups plus some auxiliary data. The cusp has finite Busemann measure if and only if $G(psi)$ contains unipotent elements. There is a natural underlying Euclidean structure on $C$ unrelated to the Hilbert metric.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا