Do you want to publish a course? Click here

The environmental dependence of X-ray AGN activity at $zsim0.4$

114   0   0.0 ( 0 )
 Added by Emil Noordeh
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the X-ray Active Galactic Nucleus (AGN) population in a sample of seven massive galaxy clusters in the redshift range $0.35<z<0.45$. We utilize high-quality Chandra X-ray imaging to robustly identify AGN and precisely determine cluster masses and centroids. Follow-up VIMOS optical spectroscopy allows us to determine which AGN are cluster members. Studying the subset of AGN with 0.5-8 keV luminosities $>6.8times10^{42}~mathrm{erg~s^{-1}}$, within $rleq2r_{500}$ (approximately the virial radius), we find that the cluster AGN space density scales with cluster mass as $sim M^{-2.0^{+0.8}_{-0.9}}$. This result rules out zero mass dependence of the cluster X-ray AGN space density at the 2.5$sigma$ level. We compare our cluster X-ray AGN sample to a control field with identical selection and find that the cluster AGN fraction is significantly suppressed relative to the field when considering the brightest galaxies with $V<21.5$. For fainter galaxies, this difference is not present. Comparing the X-ray hardness ratios of cluster member AGN to those in the control field, we find no evidence for enhanced X-ray obscuration of cluster member AGN. Lastly, we see tentative evidence that disturbed cluster environments may contribute to enhanced AGN activity.



rate research

Read More

We study the 850um emission in X-ray selected AGN in the 2 sq-deg COSMOS field using new data from the SCUBA-2 Cosmology Legacy Survey. We find 19 850um bright X-ray AGN in a high-sensitivity region covering 0.89 sq-deg with flux densities of S850=4-10 mJy. The 19 AGN span the full range in redshift and hard X-ray luminosity covered by the sample - 0.7<z<3.5 and 43.2<log10(LX) <45. We report a highly significant stacked 850um detection of a hard X-ray flux-limited population of 699 z>1 X-ray AGN - S850=0.71+/-0.08mJy. We explore trends in the stacked 850um flux densities with redshift, finding no evolution in the average cold dust emission over the redshift range probed. For Type 1 AGN, there is no significant correlation between the stacked 850um flux and hard X-ray luminosity. However, in Type 2 AGN the stacked submm flux is a factor of 2 higher at high luminosities. When averaging over all X-ray luminosities, no significant differences are found in the stacked submm fluxes of Type 1 and Type 2 AGN as well as AGN separated on the basis of X-ray hardness ratios and optical-to-infrared colours. However, at log10(LX) >44.4, dependences in average submm flux on the optical-to-infrared colours become more pronounced. We argue that these high luminosity AGN represent a transition from a secular to a merger-driven evolutionary phase where the star formation rates and accretion luminosities are more tightly coupled. Stacked AGN 850um fluxes are compared to the stacked fluxes of a mass-matched sample of K-band selected non-AGN galaxies. We find that at 10.5<log10(M*/M0)<11.5, the non-AGN 850um fluxes are 1.5-2x higher than in Type 2 AGN of equivalent mass. We suggest these differences are due to the presence of massive dusty, red starburst galaxies in the K-band selected non-AGN sample, which are not present in optically selected catalogues covering a smaller area.
We present a census of the molecular gas properties of galaxies in the most distant known X-ray cluster, CLJ1001, at z=2.51, using deep observations of CO(1-0) with JVLA. In total 14 cluster members with $M_{*} > 10^{10.5} M_{odot}$ are detected, including all the massive star-forming members within the virial radius, providing the largest galaxy sample in a single cluster at $z > 2$ with CO(1-0) measurements. We find a large variety in the gas content of these cluster galaxies, which is correlated with their relative positions (or accretion states), with those closer to the cluster core being increasingly gas-poor. Moreover, despite their low gas content, the galaxies in the cluster center exhibit an elevated star formation efficiency (SFE=SFR/$M_{rm gas}$) compared to field galaxies, suggesting that the suppression on the SFR is likely delayed compared to that on the gas content. Their gas depletion time is around $t_{rm dep} sim 400$ Myrs, comparable to the cluster dynamical time. This implies that they will likely consume all their gas within a single orbit around the cluster center, and form a passive cluster core by $zsim2$. This result is one of the first direct pieces of evidence for the influence of environment on the gas reservoirs and SFE of $z > 2$ cluster galaxies, thereby providing new insights into the rapid formation and quenching of the most massive galaxies in the early universe.
How does the environment affect active galactic nucleus (AGN) activity? We investigated this question in an extinction-free way, by selecting 1120 infrared galaxies in the $AKARI$ North Ecliptic Pole Wide field at redshift $z$ $leq$ 1.2. A unique feature of the $AKARI$ satellite is its continuous 9-band infrared (IR) filter coverage, providing us with an unprecedentedly large sample of IR spectral energy distributions (SEDs) of galaxies. By taking advantage of this, for the first time, we explored the AGN activity derived from SED modelling as a function of redshift, luminosity, and environment. We quantified AGN activity in two ways: AGN contribution fraction (ratio of AGN luminosity to the total IR luminosity), and AGN number fraction (ratio of number of AGNs to the total galaxy sample). We found that galaxy environment (normalised local density) does not greatly affect either definitions of AGN activity of our IRG/LIRG samples (log ${rm L}_{rm TIR}$ $leq$ 12). However, we found a different behavior for ULIRGs (log ${rm L}_{rm TIR}$ $>$ 12). At our highest redshift bin (0.7 $lesssim$ z $lesssim$ 1.2), AGN activity increases with denser environments, but at the intermediate redshift bin (0.3 $lesssim$ z $lesssim$ 0.7), the opposite is observed. These results may hint at a different physical mechanism for ULIRGs. The trends are not statistically significant (p $geq$ 0.060 at the intermediate redshift bin, and p $geq$ 0.139 at the highest redshift bin). Possible different behavior of ULIRGs is a key direction to explore further with future space missions (e.g., $JWST$, $Euclid$, $SPHEREx$).
Galaxy clusters are widely used to constrain cosmological parameters through their properties, such as masses, luminosity and temperature distributions. One should take into account all kind of biases that could affect these analyses in order to obtain reliable constraints. In this work, we study the difference in the properties of clusters residing in different large scale environments, defined by their position within or outside of voids, and the density of their surrounding space. We use both observational and simulation cluster and void catalogues, i.e. XCS and redMaPPer clusters, BOSS voids, and Magneticum simulations. We devise two different environmental proxies for the clusters and study their redshift, richness, mass, X-ray luminosity and temperature distributions as well as some properties of their galaxy populations. We use the Kolmogorov-Smirnov two-sample test to discover that richer and more massive clusters are more prevalent in overdense regions and outside of voids. We also find that clusters of matched richness and mass in overdense regions and outside voids tend to have higher X-ray luminosities and temperatures. These differences could have important implications for precision cosmology with clusters of galaxies, since cluster mass calibrations can vary with environment.
96 - G. Lanzuisi 2016
Compton Thick (CT) AGN are a key ingredient of Cosmic X-ray Background (CXB) synthesis models, but are still an elusive component of the AGN population beyond the local Universe. Multi-wavelength surveys are the only way to find them at z > 0.1, and a deep X-ray coverage is crucial in order to clearly identify them among star forming galaxies. As an example, the deep and wide COSMOS survey allowed us to select a total of 34 CT sources. This number is computed from the 64 nominal CT candidates, each counted for its N H probability distribution function. For each of these sources, rich multi-wavelength information is available, and is used to confirm their obscured nature, by comparing the expected AGN luminosity from spectral energy distribution fitting, with the absorption-corrected X-ray luminosity. While Chandra is more efficient, for a given exposure, in detecting CT candidates in current surveys (by a factor ~2), deep XMM-Newton pointings of bright sources are vital to fully characterize their properties: NH distribution above 10^25 cm^-2, reflection intensity etc., all crucial parameters of CXB models. Since luminous CT AGN at high redshift are extremely rare, the future of CT studies at high redshift will have to rely on the large area surveys currently underway, such as XMM-XXL and Stripe82, and will then require dedicated follow-up with XMM-Newton, while waiting for the advent of the ESA mission Athena.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا