Do you want to publish a course? Click here

Galaxy evolution across environments as probed by the ages, stellar metallicities and [alpha/Fe] of central and satellite galaxies

80   0   0.0 ( 0 )
 Added by Anna Gallazzi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore how the star formation and metal enrichment histories of present-day galaxies have been affected by environment combining stellar population parameter estimates and group environment characterization for SDSS DR7. We compare stellar ages, stellar metallicities and element abundance ratios [alpha/Fe] of satellite and central galaxies, as a function of their stellar and host group halo mass, controlling for the current star formation rate and for the infall epoch. We confirm that below log(Mstar/Msun)=10.5 satellites are older and metal-richer than equally-massive central galaxies. On the contrary, we do not detect any difference in their [alpha/Fe]: this depends primarily on stellar mass and not on group hierarchy nor host halo mass. We also find that the differences in the median age and metallicity of satellites and centrals at stellar mass below 10^{10.5}Msun are largely due to the higher fraction of passive galaxies among satellites and as a function of halo mass. We argue that the observed trends at low masses reveal the action of satellite-specific environmental effects in a `delayed-then-rapid fashion. When accounting for the varying quiescent fraction, small residual excess in age, metallicity and [alpha/Fe] emerge for satellites dominated by old stellar populations and residing in halos more massive than 10^{14}Msun, compared to equally-massive central galaxies. This excess in age, metallicity and [alpha/Fe] pertain to ancient infallers, i.e. satellites that have accreted onto the current halo more than 5 Gyr ago. This result points to the action of environment in the early phases of star formation in galaxies located close to cosmic density peaks.



rate research

Read More

176 - A. Gallazzi 2014
The stellar populations of intermediate-redshift galaxies can shed light onto the growth of massive galaxies in the last 8 billion years. We perform deep, multi-object rest-frame optical spectroscopy with IMACS/Magellan of ~70 galaxies in the E-CDFS with redshift 0.65<z<0.75, apparent magnitude R>22.7 and stellar mass >10^{10}Msun. Following the Bayesian approach adopted for previous low-redshift studies, we constrain the stellar mass, mean stellar age and stellar metallicity of individual galaxies from stellar absorption features. We characterize for the first time the dependence of stellar metallicity and age on stellar mass at z~0.7 for all galaxies and for quiescent and star-forming galaxies separately. These relations for the whole sample have a similar shape as the z=0.1 SDSS analog, but are shifted by -0.28 dex in age and by -0.13 dex in metallicity, at odds with simple passive evolution. We find that no additional star formation and chemical enrichment are required for z=0.7 quiescent galaxies to evolve into the present-day quiescent population. However, this must be accompanied by the quenching of a fraction of z=0.7 Mstar>10^{11}Msun star-forming galaxies with metallicities comparable to those of quiescent galaxies, thus increasing the scatter in age without affecting the metallicity distribution. However rapid quenching of the entire population of massive star-forming galaxies at z=0.7 would be inconsistent with the age/metallicity--mass relation for the population as a whole and with the metallicity distribution of star-forming galaxies only, which are on average 0.12 dex less metal-rich than their local counterparts. This indicates chemical enrichment until the present in at least a fraction of the z=0.7 massive star-forming galaxies.[abridged]
158 - M. Onodera 2014
We investigate the stellar population properties of a sample of 24 massive quenched galaxies at $1.25<z_mathrm{spec}<2.09$ identified in the COSMOS field with our Subaru/MOIRCS near-IR spectroscopic observations. Tracing the stellar population properties as close to their major formation epoch as possible, we try to put constraints on the star formation history, post-quenching evolution, and possible progenitor star-forming populations for such massive quenched galaxies. By using a set of Lick absorption line indices on a rest-frame optical composite spectrum, the average age, metallicity [Z/H], and $alpha$-to-iron element abundance ratio [$alpha$/Fe] are derived as $log(mathrm{age}/mathrm{Gyr})=0.04_{-0.08}^{+0.10}$, $mathrm{[Z/H]}=0.24_{-0.14}^{+0.20}$, and $[alpha/mathrm{Fe}]=0.31_{-0.12}^{+0.12}$, respectively. If our sample of quenched galaxies at $langle z rangle = 1.6$ is evolved passively to $z=0$, their stellar population properties will align in excellent agreement with local counterparts at similar stellar velocity dispersions, which qualifies them as progenitors of local massive early-type galaxies. Redshift evolution of stellar population ages in quenched galaxies combined with low redshift measurements from the literature suggests a formation redshift of $z_mathrm{f} sim 2.3$ around which the bulk of stars in these galaxies have been formed. The measured [$alpha$/Fe] value indicates a star formation timescale of $lesssim 1$ Gyr, which can be translated into a specific star formation rate of $simeq 1,mathrm{Gyr}^{-1}$ prior to quenching. Based on these findings, we discuss identifying possible progenitor star-forming galaxies at $z simeq 2.3$. We identify normal star-forming galaxies, i.e, those on the star-forming main sequence, followed by a rapid quenching event, as likely precursors of the quenched galaxies at $langle z rangle = 1.6$ presented here.
69 - Stewart Buchan 2016
There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in-situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3x10^11 Msun reside at the centre of clusters with mass Mhalo>3x10^13 Msun. Spectral analysis supports ages >10 Gyrs, corresponding to a formation redshift z_form >2. We combine these two pieces of observationally-based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at z_form. These findings indicate that either only a relatively minor fraction of their present-day stellar mass was formed in-situ at z_form, or that these massive, central galaxies form in the extreme scenario where almost all of the baryons in the progenitor halo are converted into stars. Interestingly, the latter scenario would not allow for any substantial size growth since the galaxys formation epoch either via mergers or expansion. We show our results hold irrespective of systematic uncertainties in stellar mass, abundances, galaxy merger rates, stellar initial mass function, star formation rate and dark matter accretion histories.
Satellites constitute an important fraction of the overall galaxy population and are believed to form in dark matter subhalos. Here we use the cosmological hydrodynamic simulation TNG100 to investigate how the formation histories of subhalos affect the properties and evolution of their host galaxies. We use a scaled formation time ($a_{rm nf}$) to characterize the mass assembly histories of the subhalos before they are accreted by massive host halos. We find that satellite galaxies in young subhalos (low $a_{rm nf}$) are less massive and more gas rich, and have stronger star formation and a higher fraction of ex situ stellar mass than satellites in old subhalos (high $a_{rm nf}$). Furthermore, these low $a_{rm nf}$ satellites require longer timescales to be quenched as a population than the high $a_{rm nf}$ counterparts. We find very different merger histories between satellites in fast accretion (FA, $a_{rm nf}<1.3$) and slow accretion (SA, $a_{rm nf}>1.3$) subhalos. For FA satellites, the galaxy merger frequency dramatically increases just after accretion, which enhances the star formation at accretion. While, for SA satellites, the mergers occur smoothly and continuously across the accretion time. Moreover, mergers with FA satellites happen mainly after accretion, while a contrary trend is found for SA satellites. Our results provide insight into the evolution and star formation quenching of the satellite population.
Dwarf galaxies are generally faint. To derive their age and metallicity distributions, it is critical to optimize the use of any collected photon. Koleva et al., using full spectrum fitting, have found strong population gradients in some dwarf elliptical galaxies. Here, we show that the population profiles derived with this method are consistent and more precise than those obtained with spectrophotometric indices. This allows studying fainter objects in less telescope time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا