Do you want to publish a course? Click here

Extremal quantum states

61   0   0.0 ( 0 )
 Added by Aaron Goldberg
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The striking differences between quantum and classical systems predicate disruptive quantum technologies. We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations because they can be applied beyond particular symmetry groups. The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool. In terms of the latter, we examine quantities such as the Wehrl entropy, inverse participation ratio, cumulative multipolar distribution, and metrological power, which are linked to intrinsic properties of any quantum state. We use these quantities to formulate extremal principles and determine in this way which states are the most and least quantum; the corresponding properties and potential usefulness of each extremal principle are explored in detail. While the extrema largely coincide for continuous-variable systems, our analysis of spin systems shows that care must be taken when applying an extremal principle to new contexts.



rate research

Read More

The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the surface of the Poincare sphere.
470 - M. A. Yurischev 2017
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S_{cond} as a function of measurement angle thetain[0,pi/2]. Numerical calculations show that the function S_{cond}(theta) for X states can have at most one local extremum in the open interval from zero to pi/2 (unimodality property). If the extremum is a minimum the quantum discord displays region with variable (state-dependent) optimal measurement angle theta^*. Such theta-regions (phases, fractions) are very tiny in the space of X state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval (0,pi/2). It is remarkable that the maxima exist in surprisingly wide regions and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum. Moreover, the found maxima can exceed the conditional entropy values at the ends of interval [0,pi/2] more than by 1%. This instils hope in the possibility to detect such maxima in experiment.
Recently, a framework was established to systematically construct novel universal resource states for measurement-based quantum computation using techniques involving finitely correlated states. With these methods, universal states were found which are in certain ways much less entangled than the original cluster state model, and it was hence believed that with this approach many of the extremal entanglement features of the cluster states could be relaxed. The new resources were constructed as computationally universal states--i.e. they allow one to efficiently reproduce the classical output of each quantum computation--whereas the cluster states are universal in a stronger sense since they are universal state preparators. Here we show that the new resources are universal state preparators after all, and must therefore exhibit a whole class of extremal entanglement features, similar to the cluster states.
Pure states are very important in any theory since they represent states of maximal information about the system within the theory. Here, we show that no non-trivial (not local realistic) extremal states (boxes) of general no-signaling theories can be realized within quantum theory. We then explore three interesting consequences of this fact. Firstly, since the pure states are uncorrelated from the environment, the statement forms a no-go result against the most straightforward device-independent protocol for randomness or secure key generation against general no-signaling adversaries. It also leads to the interesting question whether all non-extremal boxes allow for non-local correlations with the adversary. Secondly, in addition to the fact that new information-theoretic principles (designed to pick out the set of quantum correlations from among all non signaling ones) can in consequence be tested on arbitrary non-local vertices to check their validity, it also allows the possibility of excluding from the quantum set any box of no-signaling correlations that can be distilled to a non-local vertex. Finally, it also forms a sufficient condition to identify non-local games with no quantum winning strategy, when one can show that the game has a single unique non-signaling winning strategy. We illustrate each of these consequences with the example of generalized Popescu-Rohrlich boxes.
Rotated quadratures carry the phase-dependent information of the electromagnetic field, so they are somehow conjugate to the photon number. We analyze this noncanonical pair, finding an exact uncertatinty relation, as well as a couple of weaker inequalities obtained by relaxing some restrictions of the problem. We also find the intelligent states saturating that relation and complete their characterization by considering extra constraints on the second-order moments of the variables involved. Using these moments, we construct performance measures tailored to diagnose photon-added and Schrodinger catlike states, among others.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا