Do you want to publish a course? Click here

HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media

116   0   0.0 ( 0 )
 Added by Cheng-Te Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the computational detection of cyberbullying, existing work largely focused on building generic classifiers that rely exclusively on text analysis of social media sessions. Despite their empirical success, we argue that a critical missing piece is the model explainability, i.e., why a particular piece of media session is detected as cyberbullying. In this paper, therefore, we propose a novel deep model, HEterogeneous Neural Interaction Networks (HENIN), for explainable cyberbullying detection. HENIN contains the following components: a comment encoder, a post-comment co-attention sub-network, and session-session and post-post interaction extractors. Extensive experiments conducted on real datasets exhibit not only the promising performance of HENIN, but also highlight evidential comments so that one can understand why a media session is identified as cyberbullying.



rate research

Read More

Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequently, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement these survey methods with broad, aggregated information derived from social media content provides a potential means for near real-time estimates at scale. These may, in turn, provide grist for supporting, evaluating and iteratively improving upon public health programs and interventions. We propose a novel model for automated mental health status quantification that incorporates user embeddings. This builds upon recent work exploring representation learning methods that induce embeddings by leveraging social media post histories. Such embeddings capture latent characteristics of individuals (e.g., political leanings) and encode a soft notion of homophily. In this paper, we investigate whether user embeddings learned from twitter post histories encode information that correlates with mental health statuses. To this end, we estimated user embeddings for a set of users known to be affected by depression and post-traumatic stress disorder (PTSD), and for a set of demographically matched `control users. We then evaluated these embeddings with respect to: (i) their ability to capture homophilic relations with respect to mental health status; and (ii) the performance of downstream mental health prediction models based on these features. Our experimental results demonstrate that the user embeddings capture similarities between users with respect to mental conditions, and are predictive of mental health.
Model interpretability has become important to engenders appropriate user trust by providing the insight into the model prediction. However, most of the existing machine learning methods provide no interpretability for depression prediction, hence their predictions are obscure to human. In this work, we propose interpretive Multi-Modal Depression Detection with Hierarchical Attention Network MDHAN, for detection depressed users on social media and explain the model prediction. We have considered user posts along with Twitter-based multi-modal features, specifically, we encode user posts using two levels of attention mechanisms applied at the tweet-level and word-level, calculate each tweet and words importance, and capture semantic sequence features from the user timelines (posts). Our experiments show that MDHAN outperforms several popular and robust baseline methods, demonstrating the effectiveness of combining deep learning with multi-modal features. We also show that our model helps improve predictive performance when detecting depression in users who are posting messages publicly on social media. MDHAN achieves excellent performance and ensures adequate evidence to explain the prediction.
The rapid development of social media changes the lifestyle of people and simultaneously provides an ideal place for publishing and disseminating rumors, which severely exacerbates social panic and triggers a crisis of social trust. Early content-based methods focused on finding clues from the text and user profiles for rumor detection. Recent studies combine the stances of users comments with news content to capture the difference between true and false rumors. Although the users stance is effective for rumor detection, the manual labeling process is time-consuming and labor-intensive, which limits the application of utilizing it to facilitate rumor detection. In this paper, we first finetune a pre-trained BERT model on a small labeled dataset and leverage this model to annotate weak stance labels for users comment data to overcome the problem mentioned above. Then, we propose a novel Stance-aware Reinforcement Learning Framework (SRLF) to select high-quality labeled stance data for model training and rumor detection. Both the stance selection and rumor detection tasks are optimized simultaneously to promote both tasks mutually. We conduct experiments on two commonly used real-world datasets. The experimental results demonstrate that our framework outperforms the state-of-the-art models significantly, which confirms the effectiveness of the proposed framework.
The encoder-decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases. To address these problems, we propose a novel graph-based method that can capture explicit knowledge from related references. Our model first retrieves some document-keyphrases pairs similar to the source document from a pre-defined index as references. Then a heterogeneous graph is constructed to capture relationships of different granularities between the source document and its references. To guide the decoding process, a hierarchical attention and copy mechanism is introduced, which directly copies appropriate words from both the source document and its references based on their relevance and significance. The experimental results on multiple KG benchmarks show that the proposed model achieves significant improvements against other baseline models, especially with regard to the absent keyphrase prediction.
The outbreak of COVID-19 has transformed societies across the world as governments tackle the health, economic and social costs of the pandemic. It has also raised concerns about the spread of hateful language and prejudice online, especially hostility directed against East Asia. In this paper we report on the creation of a classifier that detects and categorizes social media posts from Twitter into four classes: Hostility against East Asia, Criticism of East Asia, Meta-discussions of East Asian prejudice and a neutral class. The classifier achieves an F1 score of 0.83 across all four classes. We provide our final model (coded in Python), as well as a new 20,000 tweet training dataset used to make the classifier, two analyses of hashtags associated with East Asian prejudice and the annotation codebook. The classifier can be implemented by other researchers, assisting with both online content moderation processes and further research into the dynamics, prevalence and impact of East Asian prejudice online during this global pandemic.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا