Do you want to publish a course? Click here

Controllable Continuous Gaze Redirection

101   0   0.0 ( 0 )
 Added by Weihao Xia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we present interpGaze, a novel framework for controllable gaze redirection that achieves both precise redirection and continuous interpolation. Given two gaze images with different attributes, our goal is to redirect the eye gaze of one person into any gaze direction depicted in the reference image or to generate continuous intermediate results. To accomplish this, we design a model including three cooperative components: an encoder, a controller and a decoder. The encoder maps images into a well-disentangled and hierarchically-organized latent space. The controller adjusts the magnitudes of latent vectors to the desired strength of corresponding attributes by altering a control vector. The decoder converts the desired representations from the attribute space to the image space. To facilitate covering the full space of gaze directions, we introduce a high-quality gaze image dataset with a large range of directions, which also benefits researchers in related areas. Extensive experimental validation and comparisons to several baseline methods show that the proposed interpGaze outperforms state-of-the-art methods in terms of image quality and redirection precision.



rate research

Read More

Gaze redirection is the task of changing the gaze to a desired direction for a given monocular eye patch image. Many applications such as videoconferencing, films, games, and generation of training data for gaze estimation require redirecting the gaze, without distorting the appearance of the area surrounding the eye and while producing photo-realistic images. Existing methods lack the ability to generate perceptually plausible images. In this work, we present a novel method to alleviate this problem by leveraging generative adversarial training to synthesize an eye image conditioned on a target gaze direction. Our method ensures perceptual similarity and consistency of synthesized images to the real images. Furthermore, a gaze estimation loss is used to control the gaze direction accurately. To attain high-quality images, we incorporate perceptual and cycle consistency losses into our architecture. In extensive evaluations we show that the proposed method outperforms state-of-the-art approaches in terms of both image quality and redirection precision. Finally, we show that generated images can bring significant improvement for the gaze estimation task if used to augment real training data.
A drivers gaze is critical for determining their attention, state, situational awareness, and readiness to take over control from partially automated vehicles. Estimating the gaze direction is the most obvious way to gauge a drivers state under ideal conditions when limited to using non-intrusive imaging sensors. Unfortunately, the vehicular environment introduces a variety of challenges that are usually unaccounted for - harsh illumination, nighttime conditions, and reflective eyeglasses. Relying on head pose alone under such conditions can prove to be unreliable and erroneous. In this study, we offer solutions to address these problems encountered in the real world. To solve issues with lighting, we demonstrate that using an infrared camera with suitable equalization and normalization suffices. To handle eyeglasses and their corresponding artifacts, we adopt image-to-image translation using generative adversarial networks to pre-process images prior to gaze estimation. Our proposed Gaze Preserving CycleGAN (GPCycleGAN) is trained to preserve the drivers gaze while removing potential eyeglasses from face images. GPCycleGAN is based on the well-known CycleGAN approach - with the addition of a gaze classifier and a gaze consistency loss for additional supervision. Our approach exhibits improved performance, interpretability, robustness and superior qualitative results on challenging real-world datasets.
Mutual gaze detection, i.e., predicting whether or not two people are looking at each other, plays an important role in understanding human interactions. In this work, we focus on the task of image-based mutual gaze detection, and propose a simple and effective approach to boost the performance by using an auxiliary 3D gaze estimation task during the training phase. We achieve the performance boost without additional labeling cost by training the 3D gaze estimation branch using pseudo 3D gaze labels deduced from mutual gaze labels. By sharing the head image encoder between the 3D gaze estimation and the mutual gaze detection branches, we achieve better head features than learned by training the mutual gaze detection branch alone. Experimental results on three image datasets show that the proposed approach improves the detection performance significantly without additional annotations. This work also introduces a new image dataset that consists of 33.1K pairs of humans annotated with mutual gaze labels in 29.2K images.
Estimating human gaze from natural eye images only is a challenging task. Gaze direction can be defined by the pupil- and the eyeball center where the latter is unobservable in 2D images. Hence, achieving highly accurate gaze estimates is an ill-posed problem. In this paper, we introduce a novel deep neural network architecture specifically designed for the task of gaze estimation from single eye input. Instead of directly regressing two angles for the pitch and yaw of the eyeball, we regress to an intermediate pictorial representation which in turn simplifies the task of 3D gaze direction estimation. Our quantitative and qualitative results show that our approach achieves higher accuracies than the state-of-the-art and is robust to variation in gaze, head pose and image quality.
Recently, there emerges a series of vision Transformers, which show superior performance with a more compact model size than conventional convolutional neural networks, thanks to the strong ability of Transformers to model long-range dependencies. However, the advantages of vision Transformers also come with a price: Self-attention, the core part of Transformer, has a quadratic complexity to the input sequence length. This leads to a dramatic increase of computation and memory cost with the increase of sequence length, thus introducing difficulties when applying Transformers to the vision tasks that require dense predictions based on high-resolution feature maps. In this paper, we propose a new vision Transformer, named Glance-and-Gaze Transformer (GG-Transformer), to address the aforementioned issues. It is motivated by the Glance and Gaze behavior of human beings when recognizing objects in natural scenes, with the ability to efficiently model both long-range dependencies and local context. In GG-Transformer, the Glance and Gaze behavior is realized by two parallel branches: The Glance branch is achieved by performing self-attention on the adaptively-dilated partitions of the input, which leads to a linear complexity while still enjoying a global receptive field; The Gaze branch is implemented by a simple depth-wise convolutional layer, which compensates local image context to the features obtained by the Glance mechanism. We empirically demonstrate our method achieves consistently superior performance over previous state-of-the-art Transformers on various vision tasks and benchmarks. The codes and models will be made available at https://github.com/yucornetto/GG-Transformer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا