No Arabic abstract
Current state-of-the-art trackers often fail due to distractorsand large object appearance changes. In this work, we explore the use ofdense optical flow to improve tracking robustness. Our main insight is that, because flow estimation can also have errors, we need to incorporate an estimate of flow uncertainty for robust tracking. We present a novel tracking framework which combines appearance and flow uncertainty information to track objects in challenging scenarios. We experimentally verify that our framework improves tracking robustness, leading to new state-of-the-art results. Further, our experimental ablations shows the importance of flow uncertainty for robust tracking.
Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifiers by maximizing the bag likelihood. In this paper, we extend this idea towards incorporating the instance significance estimation into the online MILBoost framework. First, instead of treating all instances equally, with each instance we associate a significance-coefficient that represents its contribution to the bag likelihood. The coefficients are estimated by a simple Bayesian formula that jointly considers the predictions from several standard MILBoost classifiers. Next, we follow the online boosting framework, and propose a new criterion for the selection of weak classifiers. Experiments with challenging public datasets show that the proposed method outperforms both existing MIL based and boosting based trackers.
Building reliable object detectors that are robust to domain shifts, such as various changes in context, viewpoint, and object appearances, is critical for real-world applications. In this work, we study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors. Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf), which operates on the region features of the object detectors. For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision. CycConf encourages the object detector to explore invariant structures across instances under various motions, which leads to improved model robustness in unseen domains at test time. We observe consistent out-of-domain performance improvements when training object detectors in tandem with self-supervised tasks on large-scale video datasets (BDD100K and Waymo open data). The joint training framework also establishes a new state-of-the-art on standard unsupervised domain adaptative detection benchmarks (Cityscapes, Foggy Cityscapes, and Sim10K). The code and models are available at https://github.com/xinw1012/cycle-confusion.
We propose a new method of instance-level microtubule (MT) tracking in time-lapse image series using recurrent attention. Our novel deep learning algorithm segments individual MTs at each frame. Segmentation results from successive frames are used to assign correspondences among MTs. This ultimately generates a distinct path trajectory for each MT through the frames. Based on these trajectories, we estimate MT velocities. To validate our proposed technique, we conduct experiments using real and simulated data. We use statistics derived from real time-lapse series of MT gliding assays to simulate realistic MT time-lapse image series in our simulated data. This dataset is employed as pre-training and hyperparameter optimization for our network before training on the real data. Our experimental results show that the proposed supervised learning algorithm improves the precision for MT instance velocity estimation drastically to 71.3% from the baseline result (29.3%). We also demonstrate how the inclusion of temporal information into our deep network can reduce the false negative rates from 67.8% (baseline) down to 28.7% (proposed). Our findings in this work are expected to help biologists characterize the spatial arrangement of MTs, specifically the effects of MT-MT interactions.
We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the following three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple images after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Random search with spatio-temporal constraints: we propose a robust random search method with a score penalty applied to prevent the problem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 benchmark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers. The source code is available at: https://github.com/bismex/RLT-DIMP.
The ability of deep learning to predict with uncertainty is recognized as key for its adoption in clinical routines. Moreover, performance gain has been enabled by modelling uncertainty according to empirical evidence. While previous work has widely discussed the uncertainty estimation in segmentation and classification tasks, its application on bounding-box-based detection has been limited, mainly due to the challenge of bounding box aligning. In this work, we explore to augment a 2.5D detection CNN with two different bounding-box-level (or instance-level) uncertainty estimates, i.e., predictive variance and Monte Carlo (MC) sample variance. Experiments are conducted for lung nodule detection on LUNA16 dataset, a task where significant semantic ambiguities can exist between nodules and non-nodules. Results show that our method improves the evaluating score from 84.57% to 88.86% by utilizing a combination of both types of variances. Moreover, we show the generated uncertainty enables superior operating points compared to using the probability threshold only, and can further boost the performance to 89.52%. Example nodule detections are visualized to further illustrate the advantages of our method.