No Arabic abstract
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a novel sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.
As a nuclear spin model of scalable quantum register, the one-dimensional chain of the magnetic atoms with nuclear spins 1/2 substituting the basic atoms in the plate of nuclear spin free easy-axis 3D antiferromagnet is considered. It is formulated the generalized antiferromagnet Hamiltonian in spin-wave approximation (low temperatures) considering the inhomogeneous external magnetic field, which is directed along the easy axis normally to plane of the plate and has a constant gradient along the nuclear spin chain. Assuming a weak gradient, the asymptotic expression for coefficients of unitary transformations to the diagonal form of antiferromagnet Hamiltonian is found. With this result the expression for indirect interspin coupling, which is due to hyperfine nuclear electron coupling in atoms and the virtual spin wave propagation in antiferromagnet ground state, was evaluated. It is shown that the inhomogeneous magnetic field essentially modifies the characteristics of indirect interspin coupling. The indirect interaction essentially grows and even oscillates in relation to the interspin distance when the local field value in the middle point of two considered nuclear spin is close to the critical field for quantum phase transition of spin-flop type in bulk antiferromagnet or close to antiferromagnetic resonance. Thus, the external magnetic field, its gradient, microwave frequency and power can play the role of control parameters for qubit states. Finally, the one and two qubit states decoherence and longitudinal relaxation rate are caused by the interaction of nuclear spins with virtual spin waves in antiferromagnet ground state are calculated.
Exotic magnetic structures, such as magnetic skyrmions and domain walls, are becoming more important in nitrogen-vacancy center scanning magnetometry. However, a systematic imaging approach to mapping stray fields with fluctuation of several milliteslas generated by such structures is not yet available. Here we present a scheme to image a millitesla magnetic field by tracking the magnetic resonance frequency, which can record multiple contour lines for a magnetic field. The radial basis function algorithm is employed to reconstruct the magnetic field from the contour lines. Simulations with shot noise quantitatively confirm the high quality of the reconstruction algorithm. The method was validated by imaging the stray field of a frustrated magnet. Our scheme had a maximum detectable magnetic field gradient of 0.86 mT per pixel, which enables the efficient imaging of millitesla magnetic fields.
Recently we have demonstrated AC magnetic field sensing scheme using a simple continuous-wave optically detected magnetic resonance of nitrogen-vacancy centers in diamond [Appl. Phys. Lett. 113, 082405 (2018)]. This scheme is based on electronic spin double resonance excited by continuous microwaves and radio-frequency (RF) fields. Here we measured and analyzed the double resonance spectra and magnetic field sensitivity for various frequencies of microwaves and RF fields. As a result, we observed a clear anticrossing of RF-dressed electronic spin states in the spectra and estimated the bandwidth to be approximately 5 MHz at the center frequency of 9.9 MHz.
Current density distributions in active integrated circuits (ICs) result in patterns of magnetic fields that contain structural and functional information about the IC. Magnetic fields pass through standard materials used by the semiconductor industry and provide a powerful means to fingerprint IC activity for security and failure analysis applications. Here, we demonstrate high spatial resolution, wide field-of-view, vector magnetic field imaging of static (DC) magnetic field emanations from an IC in different active states using a Quantum Diamond Microscope (QDM). The QDM employs a dense layer of fluorescent nitrogen-vacancy (NV) quantum defects near the surface of a transparent diamond substrate placed on the IC to image magnetic fields. We show that QDM imaging achieves simultaneous $sim10$ $mu$m resolution of all three vector magnetic field components over the 3.7 mm $times$ 3.7 mm field-of-view of the diamond. We study activity arising from spatially-dependent current flow in both intact and decapsulated field-programmable gate arrays (FPGAs); and find that QDM images can determine pre-programmed IC active states with high fidelity using machine-learning classification methods.
The negatively-charged NV$^-$-center in diamond has shown great success in nanoscale, high-sensitivity magnetometry. Efficient fluorescence detection is crucial for improving the sensitivity. Furthermore, integrated devices enable practicable sensors. Here, we present a novel architecture which allows us to create NV$^-$-centers a few nanometers below the diamond surface, and at the same time in the mode field maximum of femtosecond-laser-written type-II waveguides. We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing. The sensing task can be operated via the waveguide without direct light illumination through the sample, which marks an important step for magnetometry in biological systems which are fragile to light. In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.