Do you want to publish a course? Click here

New bounds on the size of Nearly Perfect Matchings in almost regular hypergraphs

368   0   0.0 ( 0 )
 Added by Abhishek Methuku
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $H$ be a $k$-uniform $D$-regular simple hypergraph on $N$ vertices. Based on an analysis of the Rodl nibble, Alon, Kim and Spencer (1997) proved that if $k ge 3$, then $H$ contains a matching covering all but at most $ND^{-1/(k-1)+o(1)}$ vertices, and asked whether this bound is tight. In this paper we improve their bound by showing that for all $k > 3$, $H$ contains a matching covering all but at most $ND^{-1/(k-1)-eta}$ vertices for some $eta = Theta(k^{-3}) > 0$, when $N$ and $D$ are sufficiently large. Our approach consists of showing that the Rodl nibble process not only constructs a large matching but it also produces many well-distributed `augmenting stars which can then be used to significantly improve the matching constructed by the Rodl nibble process. Based on this, we also improve the results of Kostochka and Rodl (1998) and Vu (2000) on the size of matchings in almost regular hypergraphs with small codegree. As a consequence, we improve the best known bounds on the size of large matchings in combinatorial designs with general parameters. Finally, we improve the bounds of Molloy and Reed (2000) on the chromatic index of hypergraphs with small codegree (which can be applied to improve the best known bounds on the chromatic index of Steiner triple systems and more general designs).



rate research

Read More

A graph $G$ whose edges are coloured (not necessarily properly) contains a full rainbow matching if there is a matching $M$ that contains exactly one edge of each colour. We refute several conjectures on matchings in hypergraphs and full rainbow matchings in graphs, made by Aharoni and Berger and others.
98 - Nathan Lindzey 2018
A family of perfect matchings of $K_{2n}$ is $t$-$intersecting$ if any two members share $t$ or more edges. We prove for any $t in mathbb{N}$ that every $t$-intersecting family of perfect matchings has size no greater than $(2(n-t) - 1)!!$ for sufficiently large $n$, and that equality holds if and only if the family is composed of all perfect matchings that contain a fixed set of $t$ disjoint edges. This is an asymptotic version of a conjecture of Godsil and Meagher that can be seen as the non-bipartite analogue of the Deza-Frankl conjecture proven by Ellis, Friedgut, and Pilpel.
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
In this paper, we consider the average size of independent edge sets, also called matchings, in a graph. We characterize the extremal graphs for the average size of matchings in general graphs and trees. In addition, we obtain inequalities between the average size of matchings and the number of matchings as well as the matching energy, which is defined as the sum of the absolute values of the zeros of the matching polynomial.
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the first order term for all (fixed) $rge 3$, with $d$ and $n$ going to infinity. In the case of strong independent sets, for $r=3$, we provide an upper bound that is tight up to the second-order term, improving on a result of Ordentlich-Roth (2004). The tightness in the strong independent set case is established by an explicit construction of a $3$-uniform, $d$-regular, cross-edge free, linear hypergraph on $n$ vertices which could be of interest in other contexts. We leave open the general case(s) with some conjectures. Our proofs use the occupancy method introduced by Davies, Jenssen, Perkins, and Roberts (2017).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا