Do you want to publish a course? Click here

On the detectability of ultra-compact binary pulsar systems

76   0   0.0 ( 0 )
 Added by Nihan Pol
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using neural networks, we integrate the ability to account for Doppler smearing due to a pulsars orbital motion with the pulsar population synthesis package psrpoppy to develop accurate modeling of the observed binary pulsar population. As a first application, we show that binary neutron star systems where the two components have highly unequal mass are, on average, easier to detect than systems which are symmetric in mass. We then investigate the population of ultra-compact ($1.5 , {rm min} leq P_{rm b} leq 15,rm min$) neutron star--white dwarf (NS--WD) and double neutron star (DNS) systems which are promising sources for the Laser Interferometer Space Antenna gravitational-wave detector. Given the non-detection of these systems in radio surveys thus far, we estimate a 95% confidence upper limit of $sim$1450 and $sim$1100 ultra-compact NS--WD and DNS systems in the Milky Way that are beaming towards the Earth respectively. We also show that using survey integration times in the range 20~s to 200~s with time-domain resampling will maximize the signal-to-noise ratio as well as the probability of detection of these ultra-compact binary systems. Among all the large scale radio pulsar surveys, those that are currently being carried out at the Arecibo radio telescope have $sim$50--80% chance of detecting at least one of these systems using current integration integration times and $sim$80--95% using optimal integration times in the next several years.



rate research

Read More

We study the optical and near-infrared luminosities and detectability of radioactively powered electromagnetic transients (macronovae) occuring in the aftermath of binary neutron star and neutron star black hole mergers. We explore the transients that result from the dynamic ejecta and those from different types of wind outflows. Based on full nuclear network simulations we calculate the resulting light curves in different wavelength bands. We scrutinize the robustness of the results by comparing a) two different nuclear reaction networks and b) two macronova models. We explore in particular how sensitive the results are to the production of alpha-decaying trans-lead nuclei. We compare two frequently used mass models: the Finite-Range Droplet Model (FRDM) and the nuclear mass model of Duflo and Zuker (DZ31). We find that the abundance of alpha-decaying trans-lead nuclei has a significant impact on the observability of the resulting macronovae. For example, the DZ31 model yields considerably larger abundances resulting in larger heating rates and thermalization efficiencies and therefore predicts substantially brighter macronova transients. We find that the dynamic ejecta from NSNS models can reach peak K-band magnitudes in excess of -15 while those from NSBH cases can reach beyond -16. Similar values can be reached by some of our wind models. Several of our models (both wind and dynamic ejecta) yield properties that are similar to the transient that was observed in the aftermath of the short GRB 130603B. We further explore the expected macronova detection frequencies for current and future instruments such as VISTA, ZTF and LSST.
91 - Kinwah Wu 2009
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.
147 - L. Feng , R. Vaulin , J. N. Hewitt 2014
Electromagnetic (EM) follow-up of gravitational wave (GW) candidates is important for verifying their astrophysical nature and studying their physical properties. While the next generation of GW detectors will have improved sensitivities to make the first detection of GW events, their ability to localize these events will remain poor during the early days of their operation. This makes EM follow-up challenging for most telescopes. Many new low frequency radio instruments have come online recently or will come online over the next few years, and their wide fields of view allow them to cover large areas of the sky in a short amount of time. This paper studies comprehensively the detectability of radio afterglows from compact binary coalescence (CBC), a predicted GW source and the most promising progenitor of short gamma-ray bursts. We explore the properties of simulated afterglow lightcurves from the forward shock for a range of source and observer parameters, then we use these lightcurves to estimate the expected rates of detection for different radio instruments and survey methods. Detecting radio afterglows and constraining their properties and rates are feasible with the current and upcoming widefield radio instruments. As a result, widefield radio instruments will play an important role in the EM follow-up of GW events.
IGR J17062-6143 is an ultra-compact X-ray binary (UCXB) with an orbital period of 37.96 min. It harbours a millisecond X-ray pulsar that is spinning at 163 Hz and and has continuously been accreting from its companion star since 2006. Determining the composition of the accreted matter in UCXBs is of high interest for studies of binary evolution and thermonuclear burning on the surface of neutron stars. Here, we present a multi-wavelength study of IGR J17062-6143 aimed to determine the detailed properties of its accretion disc and companion star. The multi-epoch photometric UV to near-infrared spectral energy distribution (SED) is consistent with an accretion disc $F_{ u}propto u^{1/3}$. The SED modelling of the accretion disc allowed us to estimate an outer disc radius of $R_{out}=2.2^{+0.9}_{-0.4} times 10^{10}$ cm and a mass-transfer rate of $dot{m}=1.8^{+1.8}_{-0.5}times10^{-10}$ M$_{odot}$ yr$^{-1}$. Comparing this with the estimated mass-accretion rate inferred from its X-ray emission suggests that $gtrsim$90% of the transferred mass is lost from the system. Moreover, our SED modelling shows that the thermal emission component seen in the X-ray spectrum is highly unlikely from the accretion disc and must therefore represent emission from the surface of the neutron star. Our low-resolution optical spectrum revealed a blue continuum and no emission lines, i.e. lacking H and He features. Based on the current data we cannot conclusively identify the nature of the companion star, but we make recommendations for future study that can distinguish between the different possible evolution histories of this X-ray binary. Finally, we demonstrate how multiwavelength observations can be effectively used to find more UCXBs among the LMXBs.
To confirm the nature of the donor star in the ultra-compact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3,000$-$10,000 {AA}) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place $3sigma$ upper limits on the H$alpha$ and HeII $lambda 4686$ emission line equivalent widths $-$EW$_{mathrm{Halpha}} lesssim 14$ {AA} and $-$EW$_{mathrm{HeII}} lesssim 9$ {AA}, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for $L_{mathrm{2-10 keV}} approx 10^{33}-10^{34}$ erg s$^{-1}$ is typically $-$EW$_{mathrm{Halpha}} sim 50$ {AA}). This supports our previous suggestion (by Bahramian et al.) of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, $V$ and $I$-band data to search for periodicities. In the optical bands we recover the seven-day superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole / He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا