Do you want to publish a course? Click here

Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win

154   0   0.0 ( 0 )
 Added by Utku Evci
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Sparse Neural Networks (NNs) can match the generalization of dense NNs using a fraction of the compute/storage for inference, and also have the potential to enable efficient training. However, naively training unstructured sparse NNs from random initialization results in significantly worse generalization, with the notable exception of Lottery Tickets (LTs) and Dynamic Sparse Training (DST). In this work, we attempt to answer: (1) why training unstructured sparse networks from random initialization performs poorly and; (2) what makes LTs and DST the exceptions? We show that sparse NNs have poor gradient flow at initialization and propose a modified initialization for unstructured connectivity. Furthermore, we find that DST methods significantly improve gradient flow during training over traditional sparse training methods. Finally, we show that LTs do not improve gradient flow, rather their success lies in re-learning the pruning solution they are derived from - however, this comes at the cost of learning novel solutions.



rate research

Read More

The lottery ticket hypothesis states that sparse subnetworks exist in randomly initialized dense networks that can be trained to the same accuracy as the dense network they reside in. However, the subsequent work has failed to replicate this on large-scale models and required rewinding to an early stable state instead of initialization. We show that by using a training method that is stable with respect to linear mode connectivity, large networks can also be entirely rewound to initialization. Our subsequent experiments on common vision tasks give strong credence to the hypothesis in Evci et al. (2020b) that lottery tickets simply retrain to the same regions (although not necessarily to the same basin). These results imply that existing lottery tickets could not have been found without the preceding dense training by iterative magnitude pruning, raising doubts about the use of the lottery ticket hypothesis.
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-to-sparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static. Code used in our work can be found in github.com/google-research/rigl.
There have been long-standing controversies and inconsistencies over the experiment setup and criteria for identifying the winning ticket in literature. To reconcile such, we revisit the definition of lottery ticket hypothesis, with comprehensive and more rigorous conditions. Under our new definition, we show concrete evidence to clarify whether the winning ticket exists across the major DNN architectures and/or applications. Through extensive experiments, we perform quantitative analysis on the correlations between winning tickets and various experimental factors, and empirically study the patterns of our observations. We find that the key training hyperparameters, such as learning rate and training epochs, as well as the architecture characteristics such as capacities and residual connections, are all highly correlated with whether and when the winning tickets can be identified. Based on our analysis, we summarize a guideline for parameter settings in regards of specific architecture characteristics, which we hope to catalyze the research progress on the topic of lottery ticket hypothesis.
Overparameterization has been shown to benefit both the optimization and generalization of neural networks, but large networks are resource hungry at both training and test time. Network pruning can reduce test-time resource requirements, but is typically applied to trained networks and therefore cannot avoid the expensive training process. We aim to prune networks at initialization, thereby saving resources at training time as well. Specifically, we argue that efficient training requires preserving the gradient flow through the network. This leads to a simple but effective pruning criterion we term Gradient Signal Preservation (GraSP). We empirically investigate the effectiveness of the proposed method with extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet, using VGGNet and ResNet architectures. Our method can prune 80% of the weights of a VGG-16 network on ImageNet at initialization, with only a 1.6% drop in top-1 accuracy. Moreover, our method achieves significantly better performance than the baseline at extreme sparsity levels.
$textit{RigL}$, a sparse training algorithm, claims to directly train sparse networks that match or exceed the performance of existing dense-to-sparse training techniques (such as pruning) for a fixed parameter count and compute budget. We implement $textit{RigL}$ from scratch in Pytorch and reproduce its performance on CIFAR-10 within 0.1% of the reported value. On both CIFAR-10/100, the central claim holds -- given a fixed training budget, $textit{RigL}$ surpasses existing dynamic-sparse training methods over a range of target sparsities. By training longer, the performance can match or exceed iterative pruning, while consuming constant FLOPs throughout training. We also show that there is little benefit in tuning $textit{RigL}$s hyper-parameters for every sparsity, initialization pair -- the reference choice of hyperparameters is often close to optimal performance. Going beyond the original paper, we find that the optimal initialization scheme depends on the training constraint. While the Erdos-Renyi-Kernel distribution outperforms the Uniform distribution for a fixed parameter count, for a fixed FLOP count, the latter performs better. Finally, redistributing layer-wise sparsity while training can bridge the performance gap between the two initialization schemes, but increases computational cost.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا