I re-examine a recent work by G. Landi and G. E. Landi. [arXiv:1808.06708 [physics.ins-det]], in which the authors claim that the resolution of a tracker ca vary linearly with the number of detection layers, $N$, that is, faster than the commonly known $sqrt{N}$ variation, for a tracker of fixed length, in case the precision of the position measurement is allowed to vary from layer to layer, i.e. heteroscedasticity, and an appropriate analysis method, a weighted least squares fit, is used.