No Arabic abstract
In zero-shot learning (ZSL), conditional generators have been widely used to generate additional training features. These features can then be used to train the classifiers for testing data. However, some testing data are considered hard as they lie close to the decision boundaries and are prone to misclassification, leading to performance degradation for ZSL. In this paper, we propose to learn clusterable features for ZSL problems. Using a Conditional Variational Autoencoder (CVAE) as the feature generator, we project the original features to a new feature space supervised by an auxiliary classification loss. To further increase clusterability, we fine-tune the features using Gaussian similarity loss. The clusterable visual features are not only more suitable for CVAE reconstruction but are also more separable which improves classification accuracy. Moreover, we introduce Gaussian noise to enlarge the intra-class variance of the generated features, which helps to improve the classifiers robustness. Our experiments on SUN,CUB, and AWA2 datasets show consistent improvement over previous state-of-the-art ZSL results by a large margin. In addition to its effectiveness on zero-shot classification, experiments show that our method to increase feature clusterability benefits few-shot learning algorithms as well.
Zero-shot object recognition or zero-shot learning aims to transfer the object recognition ability among the semantically related categories, such as fine-grained animal or bird species. However, the images of different fine-grained objects tend to merely exhibit subtle differences in appearance, which will severely deteriorate zero-shot object recognition. To reduce the superfluous information in the fine-grained objects, in this paper, we propose to learn the redundancy-free features for generalized zero-shot learning. We achieve our motivation by projecting the original visual features into a new (redundancy-free) feature space and then restricting the statistical dependence between these two feature spaces. Furthermore, we require the projected features to keep and even strengthen the category relationship in the redundancy-free feature space. In this way, we can remove the redundant information from the visual features without losing the discriminative information. We extensively evaluate the performance on four benchmark datasets. The results show that our redundancy-free feature based generalized zero-shot learning (RFF-GZSL) approach can achieve competitive results compared with the state-of-the-arts.
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes, the sample is from a certain class, and ``no otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.
Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature space and a semantic space (e.g. attribute space). Key to ZSL is thus to learn a projection function that is robust against the often large domain gap between the seen and unseen classes. In this paper, we propose a novel ZSL model termed domain-invariant projection learning (DIPL). Our model has two novel components: (1) A domain-invariant feature self-reconstruction task is introduced to the seen/unseen class data, resulting in a simple linear formulation that casts ZSL into a min-min optimization problem. Solving the problem is non-trivial, and a novel iterative algorithm is formulated as the solver, with rigorous theoretic algorithm analysis provided. (2) To further align the two domains via the learned projection, shared semantic structure among seen and unseen classes is explored via forming superclasses in the semantic space. Extensive experiments show that our model outperforms the state-of-the-art alternatives by significant margins.
Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.
The recognition of Chinese characters has always been a challenging task due to their huge variety and complex structures. The latest research proves that such an enormous character set can be decomposed into a collection of about 500 fundamental Chinese radicals, and based on which this problem can be solved effectively. While with the constant advent of novel Chinese characters, the number of basic radicals is also expanding. The current methods that entirely rely on existing radicals are not flexible for identifying these novel characters and fail to recognize these Chinese characters without learning all of their radicals in the training stage. To this end, this paper proposes a novel Hippocampus-heuristic Character Recognition Network (HCRN), which references the way of hippocampus thinking, and can recognize unseen Chinese characters (namely zero-shot learning) only by training part of radicals. More specifically, the network architecture of HCRN is a new pseudo-siamese network designed by us, which can learn features from pairs of input training character samples and use them to predict unseen Chinese characters. The experimental results show that HCRN is robust and effective. It can accurately predict about 16,330 unseen testing Chinese characters relied on only 500 trained Chinese characters. The recognition accuracy of HCRN outperforms the state-of-the-art Chinese radical recognition approach by 15% (from 85.1% to 99.9%) for recognizing unseen Chinese characters.