Do you want to publish a course? Click here

Mixed Hegselmann-Krause Dynamics

137   0   0.0 ( 0 )
 Added by Hsin-Lun Li
 Publication date 2020
  fields Physics
and research's language is English
 Authors Hsin-Lun Li




Ask ChatGPT about the research

The original Hegselmann-Krause (HK) model consists of a set of~$n$ agents that are characterized by their opinion, a number in~$[0, 1]$. Each agent, say agent~$i$, updates its opinion~$x_i$ by taking the average opinion of all its neighbors, the agents whose opinion differs from~$x_i$ by at most~$epsilon$. There are two types of~HK models: the synchronous~HK model and the asynchronous~HK model. For the synchronous model, all the agents update their opinion simultaneously at each time step, whereas for the asynchronous~HK model, only one agent chosen uniformly at random updates its opinion at each time step. This paper is concerned with a variant of the~HK opinion dynamics, called the mixed~HK model, where each agent can choose its degree of stubbornness and mix its opinion with the average opinion of its neighbors at each update. The degree of the stubbornness of agents can be different and/or vary over time. An agent is not stubborn or absolutely open-minded if its new opinion at each update is the average opinion of its neighbors, and absolutely stubborn if its opinion does not change at the time of the update. The particular case where, at each time step, all the agents are absolutely open-minded is the synchronous~HK model. In contrast, the asynchronous model corresponds to the particular case where, at each time step, all the agents are absolutely stubborn except for one agent chosen uniformly at random who is absolutely open-minded. We first show that some of the common properties of the synchronous~HK model, such as finite-time convergence, do not hold for the mixed model. We then investigate conditions under which the asymptotic stability holds, or a consensus can be achieved for the mixed model.



rate research

Read More

159 - Hsin-Lun Li 2021
The original Hegselmann-Krause (HK) model is composed of a finite number of agents characterized by their opinion, a number in $[0,1]$. An agent updates its opinion via taking the average opinion of its neighbors whose opinion differs by at most $epsilon$ for $epsilon>0$ a confidence bound. An agent is absolutely stubborn if it does not change its opinion while update, and absolutely open-minded if its update is the average opinion of its neighbors. There are two types of HK models--the synchronous HK model and the asynchronous HK model. The paper is about a variant of the HK dynamics, called the mixed model, where each agent can choose its degree of stubbornness and mix its opinion with the average opinion of its neighbors at all times. The mixed model reduces to the synchronous HK model if all agents are absolutely open-minded all the time, and the asynchronous HK model if only one uniformly randomly selected agent is absolutely open-minded and the others are absolutely stubborn at all times. In cite{mhk}, we discuss the mixed model deterministically. Point out some properties of the synchronous HK model, such as finite-time convergence, do not hold for the mixed model. In this topic, we study the mixed model nondeterministically. List some properties of the asynchronous model which do not hold for the mixed model. Then, study circumstances under which the asymptotic stability holds.
This paper elaborates control strategies to prevent clustering effects in opinion formation models. This is the exact opposite of numerous situations encountered in the literature where, on the contrary, one seeks controls promoting consensus. In order to promote declustering, instead of using the classical variance that does not capture well the phenomenon of dispersion, we introduce an entropy-type functional that is adapted to measuring pairwise distances between agents. We then focus on a Hegselmann-Krause-type system and design declustering sparse controls both in finite-dimensional and kinetic models. We provide general conditions characterizing whether clustering can be avoided as function of the initial data. Such results include the description of black holes (where complete collapse to consensus is not avoidable), safety zones (where the control can keep the system far from clustering), basins of attraction (attractive zones around the clustering set) and collapse prevention (when convergence to the clustering set can be avoided).
In the present chapter we study the emergence of global patterns in large groups in first and second-order multi-agent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.
194 - Lee DeVille , Eugene Lerman 2013
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations, on the other hand, give rise to surjective maps from large dynamical systems to smaller ones. One can view these surjections as a kind of fast/slow variable decompositions or as abstractions in the computer science sense of the word.
Mixed-mode oscillations (MMOs) are complex oscillatory patterns in which large-amplitude relaxation oscillations (LAOs) alternate with small-amplitude oscillations (SAOs). MMOs are found in singularly perturbed systems of ordinary differential equations of slow-fast type, and are typically related to the presence of so-called folded singularities and the corresponding canard trajectories in such systems. Here, we introduce a canonical family of three-dimensional slow-fast systems that exhibit MMOs which are induced by relaxation-type dynamics, and which are hence based on a jump mechanism, rather than on a more standard canard mechanism. In particular, we establish a correspondence between that family and a class of associated one-dimensional piecewise affine maps (PAMs) which exhibit MMOs with the same signature. Finally, we give a preliminary classification of admissible mixed-mode signatures, and we illustrate our findings with numerical examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا