Do you want to publish a course? Click here

Bond-bond correlations, gap relations and thermodynamics of spin-$1/2$ chains with spin-Peierls transitions and bond-order-wave phases

84   0   0.0 ( 0 )
 Added by Sudip Kumar Saha
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin-$1/2$ chain with antiferromagnetic exchange $J_1$ and $J_2 = alpha J_1$ between first and second neighbors, respectively, has both gapless and gapped ($Delta(alpha) > 0$) quantum phases at frustration $0 le alpha le 3/4$. The ground state instability of regular ($delta = 0$) chains to dimerization ($delta > 0$) drives a spin-Peierls transition at $T_{SP}(alpha)$ that varies with $alpha$ in these strongly correlated systems. The thermodynamic limit of correlated states is obtained by exact treatment of short chains followed by density matrix renormalization calculations of progressively longer chains. The doubly degenerate ground states of the gapped regular phase are bond order waves (BOWs) with long-range bond-bond correlations and electronic dimerization $delta_e(alpha)$. The $T$ dependence of $delta_e(T,alpha)$ is found using four-spin correlation functions and contrasted to structural dimerization $delta(T,alpha)$ at $T le T_{SP}(alpha)$. The relation between $T_{SP}(alpha)$ and the $T = 0$ gap $Delta(delta(0),alpha)$ varies with frustration in both gapless and gapped phases. The magnetic susceptibility $chi(T,alpha)$ at $T > T_{SP}$ can be used to identify physical realizations of spin-Peierls systems. The $alpha = 1/2$ chain illustrates the characteristic BOW features of a regular chain with a large singlet-triplet gap and electronic dimerization.



rate research

Read More

We investigate the antiadiabatic limit of an antiferromagnetic S=1/2 Heisenberg chain coupled to Einstein phonons via a bond coupling. The flow equation method is used to decouple the spin and the phonon part of the Hamiltonian. In the effective spin model longer range spin-spin interactions are generated. The effective spin chain is frustrated. The resulting temperature dependent couplings are used to determine the magnetic susceptibility and to determine the phase transition from a gapless state to a dimerized gapped phase. The susceptibilities and the phase diagram obtained via the effective couplings are compared with independently calculated quantum Monte Carlo results.
Magnetism arising from coupled spin and spatial degrees of freedom underlies the properties of a broad array of physical systems. We study here the interplay between correlations in spin and space for the quantum compass model in a finite external field, using quantum Monte Carlo methods. We find that finite temperatures cant the spin and space (bond) correlations, with increasing temperature even reorienting spin correlations between orthogonal spatial directions. We develop a coupled mean field theory to understand this effect in terms of the underlying quantum critical properties of crossed Ising chains in transverse fields and an effective field that weakens upon increasing temperature. Thermal canting offers an experimental signature of spin-bond anisotropy.
296 - H.T. Lu , Y.H. Su , L.Q. Sun 2004
Thermodynamic properties of a tetrameric bond-alternating Heisenberg spin chain with ferromagnetic-ferromagnetic-antiferromagnetic-antiferromagnetic exchange interactions are studied using the transfer-matrix renormalization group and compared to experimental measurements. The temperature dependence of the uniform susceptibility exhibits typical ferrimagnetic features. Both the uniform and staggered magnetic susceptibilities diverge in the limit $Tto 0$, indicating that the ground state has both ferromagnetic and antiferromagnetic long-range orders. A double-peak structure appears in the temperature dependence of the specific heat. Our numerical calculation gives a good account for the temperature and field dependence of the susceptibility, the magnetization, and the specific heat for Cu(3-Clpy)$_{2}$(N$_{3}$)$_{2}$ (3-Clpy=3-Chloroyridine).
98 - Alexei K. Kolezhuk 1998
We present the class of models of a nonmagnetic impurity in S=1/2 generalized ladder with an AKLT-type valence bond ground state, and of a S=1/2 impurity in the S=1 AKLT chain. The ground state in presence of impurity can be found exactly. Recently studied phenomenon of local enhancement of antiferromagnetic correlations around the impurity is absent for this family of models.
The density-matrix renormalization group (DMRG) is employed to calculate optical properties of the half-filled Hubbard model with nearest-neighbor interactions. In order to model the optical excitations of oligoenes, a Peierls dimerization is included whose strength for the single bonds may fluctuate. Systems with up to 100 electrons are investigated, their wave functions are analyzed, and relevant length-scales for the low-lying optical excitations are identified. The presented approach provides a concise picture for the size dependence of the optical absorption in oligoenes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا