Do you want to publish a course? Click here

Non-pseudounitary fusion

51   0   0.0 ( 0 )
 Added by Andrew Schopieray
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove there exist infinitely many inequivalent fusion categories whose Grothendieck rings do not admit any pseudounitary categorifications.



rate research

Read More

We introduce fusion bialgebras and their duals and systematically study their Fourier analysis. As an application, we discover new efficient analytic obstructions on the unitary categorification of fusion rings. We prove the Hausdorff-Young inequality, uncertainty principles for fusion bialgebras and their duals. We show that the Schur product property, Youngs inequality and the sum-set estimate hold for fusion bialgebras, but not always on their duals. If the fusion ring is the Grothendieck ring of a unitary fusion category, then these inequalities hold on the duals. Therefore, these inequalities are analytic obstructions of categorification. We classify simple integral fusion rings of Frobenius type up to rank 8 and of Frobenius-Perron dimension less than 4080. We find 34 ones, 4 of which are group-like and 28 of which can be eliminated by applying the Schur product property on the dual. In general, these inequalities are obstructions to subfactorize fusion bialgebras.
For a braided fusion category $mathcal{V}$, a $mathcal{V}$-fusion category is a fusion category $mathcal{C}$ equipped with a braided monoidal functor $mathcal{F}:mathcal{V} to Z(mathcal{C})$. Given a fixed $mathcal{V}$-fusion category $(mathcal{C}, mathcal{F})$ and a fixed $G$-graded extension $mathcal{C}subseteq mathcal{D}$ as an ordinary fusion category, we characterize the enrichments $widetilde{mathcal{F}}:mathcal{V} to Z(mathcal{D})$ of $mathcal{D}$ which are compatible with the enrichment of $mathcal{C}$. We show that G-crossed extensions of a braided fusion category $mathcal{C}$ are G-extensions of the canonical enrichment of $mathcal{C}$ over itself. As an application, we parameterize the set of $G$-crossed braidings on a fixed $G$-graded fusion category in terms of certain subcategories of its center, extending Nikshychs classification of the braidings on a fusion category.
A unitary fusion category is called $mathbb{Z}/2mathbb{Z}$-quadratic if it has a $mathbb{Z}/2mathbb{Z}$ group of invertible objects and one other orbit of simple objects under the action of this group. We give a complete classification of $mathbb{Z}/2mathbb{Z}$-quadratic unitary fusion categories. The main tools for this classification are skein theory, a generalization of Ostriks results on formal codegrees to analyze the induction of the group elements to the center, and a computation similar to Larsons rank-finiteness bound for $mathbb{Z}/3mathbb{Z}$-near group pseudounitary fusion categories. This last computation is contained in an appendix coauthored with attendees from the 2014 AMS MRC on Mathematics of Quantum Phases of Matter and Quantum Information.
We analyze the action of the Brauer-Picard group of a pointed fusion category on the set of Lagrangian subcategories of its center. Using this action we compute the Brauer-Picard groups of pointed fusion categories associated to several classical finite groups. As an application, we construct new examples of weakly group-theoretical fusion categories.
233 - Deepak Naidu , Dmitri Nikshych , 2009
We describe all fusion subcategories of the representation category of a twisted quantum double of a finite group. In view of the fact that every group-theoretical braided fusion category can be embedded into a representation category of a twisted quantum double of a finite group, this gives a complete description of all group-theoretical braided fusion categories. We describe the lattice and give formulas for some invariants of the fusion subcategories of representation category of a twisted quantum double of a finite group. We also give a characterization of group-theoretical braided fusion categories as equivariantizations of pointed categories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا