No Arabic abstract
We present the first $L-$band (2.8 to 4.1~$mu$m) spectroscopy of $kappa$~Andromedae~b, a $sim20~M_{mathrm{Jup}}$ companion orbiting at $1^{primeprime}$ projected separation from its B9-type stellar host. We combine our Large Binocular Telescope ALES integral field spectrograph data with measurements from other instruments to analyze the atmosphere and physical characteristics of $kappa$~And~b. We report a discrepancy of $sim20%$ ($2sigma$) in the $L^{prime}$ flux of $kappa$~And~b when comparing to previously published values. We add an additional $L^{prime}$ constraint using an unpublished imaging dataset collected in 2013 using LBTI/LMIRCam, the instrument in which the ALES module has been built. The LMIRCam measurement is consistent with the ALES measurement, both suggesting a fainter $L$-band scaling than previous studies. The data, assuming the flux scaling measured by ALES and LMIRCam imaging, are well fit by an L3-type brown dwarf. Atmospheric model fits to measurements spanning 0.9-4.8~$mu$m reveal some tension with the predictions of evolutionary models, but the proper choice of cloud parameters can provide some relief. In particular, models with clouds extending to very-low pressures composed of grains $leq1~mu$m appear to be necessary. If the brighter $L^{prime}$ photometry is accurate, there is a hint that sub-solar metallicity may be required.
We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L), 4.052 (NB 4.05) and 4.78 {mu}m (M) obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L band. We derive NB 4.05 = 13.0 +- 0.2 and M = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and compare it to seven PHOENIX-based atmospheric models in order to derive Teff = 1900+100-200 K. Models do not set constrains on the surface gravity. ``Hot-start evolutionary models predict masses of 14+25-2 MJup based on the luminosity and temperature estimates, and considering a conservative age range for the system (30+120-10 Myr). ``warm-start evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of {kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of {kappa} And b.
We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V primary is joined by two co-orbiting brown dwarfs. By combining the age of the system with the dynamical masses and luminosities of the substellar companions, we can test evolutionary models of cool brown dwarfs and extra-solar giant planets. Previous near-infrared studies suggest a disagreement between HD 130948BC luminosities and those derived from evolutionary models. We obtained spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to extend the wavelength coverage into the thermal infrared. Jointly using JHK photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric parameters that are consistent with parameters derived from evolutionary models. We leverage the consistency of these atmospheric quantities to favor a younger age (0.50 pm 0.07 Gyr) of the system compared to the older age (0.79 pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity discrepancy.
We present moderate-resolution ($Rsim4000$) $K$ band spectra of the super-Jupiter, $kappa$ Andromedae b. The data were taken with the OSIRIS integral field spectrograph at Keck Observatory. The spectra reveal resolved molecular lines from H$_{2}$O and CO. The spectra are compared to a custom $PHOENIX$ atmosphere model grid appropriate for young planetary-mass objects. We fit the data using a Markov Chain Monte Carlo forward modeling method. Using a combination of our moderate-resolution spectrum and low-resolution, broadband data from the literature, we derive an effective temperature of $T_mathrm{eff}$ = 1950 - 2150 K, a surface gravity of $log g=3.5 - 4.5$, and a metallicity of [M/H] = $-0.2 - 0.0$. These values are consistent with previous estimates from atmospheric modeling and the currently favored young age of the system ($<$50 Myr). We derive a C/O ratio of 0.70$_{-0.24}^{+0.09}$ for the source, broadly consistent with the solar C/O ratio. This, coupled with the slightly subsolar metallicity, implies a composition consistent with that of the host star, and is suggestive of formation by a rapid process. The subsolar metallicity of $kappa$ Andromedae b is also consistent with predictions of formation via gravitational instability. Further constraints on formation of the companion will require measurement of the C/O ratio of $kappa$ Andromedae A. We also measure the radial velocity of $kappa$ Andromedae b for the first time, with a value of $-1.4pm0.9,mathrm{km},mathrm{s}^{-1}$ relative to the host star. We find that the derived radial velocity is consistent with the estimated high eccentricity of $kappa$ Andromedae b.
The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--1710nm at a resolution of at least $R > 80,000$, and we measure its RV, H$alpha$ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, $Q$, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700--900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1ms$^{-1}$ in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4ms$^{-1}$.
We report on high-resolution and spatially-resolved spectra of Io in the 4.0 {mu}m region, recorded with the VLT/CRIRES instrument in 2008 and 2010, which provide the first detection of the { u}1 + { u}3 band of SO2 in Ios atmosphere. Data are analyzed to constrain the latitudinal, longitudinal, and diurnal distribution of Ios SO2 atmosphere as well as its characteristic temperature. equatorial SO2 column densities clearly show longitudinal asymmetry, but with a maximum of around 1.5e17 cm-2 at central meridian longitude L = 200-220 and a minimum of around 3e16 cm-2 at L = 285-300, the longitudinal pattern somewhat differs from earlier inferences from Ly {alpha} and thermal IR measurements. Within the accuracy of the measurements, no evolution of the atmospheric density from mid-2008 to mid-2010 can be distinguished. The decrease of the SO2 column density towards high latitude is apparent, and the typical latitudinal extent of the atmosphere found to be (+-) 40{deg} at half-maximum. The data show moderate diurnal variations of the equatorial atmosphere, which is evidence for a partially sublimation-supported atmospheric component. Compared to local noon, factor of 2 lower densities are observed around 40{deg} before and 80{deg} after noon. Best-fit gas temperatures range from 150 to 220 K, with a weighted mean value of 170 (+-) 20 K, which should represent the column-weighted mean kinetic temperature of Ios atmosphere. Finally, although the data include clear thermal emission due to Pillan (in outburst in July 2008) and Loki, no detectable enhancements in the SO2 atmosphere above these volcanic regions are found, with an upper limit of 4e16 cm-2 at Pillan and 1e17 cm-2 at Loki.