No Arabic abstract
We study the axion strings with the electroweak gauge flux in the DFSZ axion model and show that these strings, called the electroweak axion strings, can exhibit superconductivity without fermionic zero modes. We construct three types of electroweak axion string solutions. Among them, the string with $W$-flux can be lightest in some parameter space, which leads to a stable superconducting cosmic string. We also show that a large electric current can flow along the string due to the Peccei-Quinn scale much higher than the electroweak scale. This large current induces a net attractive force between the axion strings with the same topological charge, which opens a novel possibility that the axion strings form Y-junctions in the early universe.
Taking the recently reported non-zero rotation angle of the cosmic microwave background (CMB) linear polarization $beta=0.35pm0.14{rm, deg}$ as the hint for a pseudo Nambu-Goldstone boson quintessence dark energy (DE), we study the electroweak (EW) axion quintessence DE model where the axion mass is generated by the EW instantons. We find that the observed value of $beta$ implies a non-trivial $U(1)$ electromagnetic anomaly coefficient ($c_{gamma}$), once the current constraint on the DE equation of state is also taken into account. With the aid of the hypothetical high energy structure of the model inspired by the experimentally inferred $c_{gamma}$, the model is shown to be able to make prediction for the current equation of state ($w_{rm DE,0}$) of the quintessence DE. This is expected to make our scenario distinguishable in comparison with the cosmological constant ($w=-1$) and testable in future when the error in the future measurement of $w_{rm DE,0}$ is reduced to $mathcal{O}(1)%$ level ($delta w=mathcal{O}(10^{-2})$).
String/M theory compactifications with low energy supersymmetry tend to predict that dark matter has two components: axions and WIMPs cite{1004.5138,1204.2795}. In accord with this, we show that the tentative 130 GeV gamma-line signal reported in cite{1204.2797} can be interpreted as arising from the annihilation of 145 GeV mass, Wino-like WIMPs into a Z-boson and a photon. In this context, the signal implies a second component of dark matter which we interpret as being composed of axions - the relative Wino/Axion abundances being approximately equal. Further predictions are implied: signals in both diffuse and monochromatic photons from dwarf spheroidal galaxies; monochromatic photons with energy 145 GeV; for the LHC, the Higgs boson mass has been predicted in this framework cite{1112.1059}, and the current Higgs limits provide interesting constraints on the mass of the Gluino.
In our previous work, we found new types of the cosmic string solutions in the Abelian-Higgs model with an enhanced $U(1)$ global symmetry. We dubbed those solutions as the compensated/uncompensated strings. The compensated string is similar to the conventional cosmic string in the Abrikosov-Nielsen-Olesen (ANO) string, around which only the would-be Nambu-Goldstone (NG) boson winds. Around the uncompensated string, on the other hand, the physical NG boson also winds, where the physical NG boson is associated with the spontaneous breaking of the enhanced symmetry. Our previous simulation in the 2+1 dimensional spacetime confirmed that both the compensated/uncompensated strings are formed at the phase transition of the symmetry breaking. Non-trivial winding of the physical NG boson around the strings potentially causes the so-called axion domain-wall problem when the model is applied to the axion model. In this paper, we perform simulation in the 3+1 dimensional spacetime to discuss the fate of the uncompensated strings. We observe that the evolution of the string-network is highly complicated in the 3+1 dimensional simulation compared with that seen in the previous simulation. Despite such complications, we find that the number of the uncompensated strings which could cause can be highly suppressed at late times. Our observation suggests that the present setup can be applied to the axion model without suffering from the axion domain-wall problem.
We demonstrate that asymmetric reheating arises in a large ensemble of string compactifications with many axions and gauged dark sectors. This phenomenon may help avoid numerous cosmological problems that may arise if the sectors were reheated democratically. Distributions of couplings are presented for two classes of axion reheatons, both of which exhibit very small couplings to most of the gauge sectors. In one class, ratios of reheating couplings and also preferred gauge groups are frequently determined by local regions in the string geometry.
We study early and late time signatures of both QCD axion strings and hyperlight axion strings (axiverse strings). We focus on charge deposition onto axion strings from electromagnetic fields and subsequent novel neutralizing mechanisms due to bound state formation. While early universe signatures appear unlikely, there are a plethora of late time signatures. Axion strings passing through galaxies obtain a huge charge density, which is neutralized by a dense plasma of bound state Standard Model particles forming a one dimensional atom. The charged wave packets on the string, as well as the dense plasma outside, travel at nearly the speed of light along the string. These packets of high energy plasma collide with a center of mass energy of up to $10^{9}$ GeV. These collisions can have luminosities up to seven orders of magnitude larger than the solar luminosity, and last for thousands of years, making them visible at radio telescopes even when they occur cosmologically far away. The new observables are complementary to the CMB observables for hyperlight axion strings that have been recently proposed, and are sensitive to a similar motivated parameter range.