Do you want to publish a course? Click here

Diverse Exploration via InfoMax Options

91   0   0.0 ( 0 )
 Added by Yuji Kanagawa
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study the problem of autonomously discovering temporally abstracted actions, or options, for exploration in reinforcement learning. For learning diverse options suitable for exploration, we introduce the infomax termination objective defined as the mutual information between options and their corresponding state transitions. We derive a scalable optimization scheme for maximizing this objective via the termination condition of options, yielding the InfoMax Option Critic (IMOC) algorithm. Through illustrative experiments, we empirically show that IMOC learns diverse options and utilizes them for exploration. Moreover, we show that IMOC scales well to continuous control tasks.



rate research

Read More

Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster. However, despite prior work on this topic, the problem of discovering options through interaction with an environment remains a challenge. In this paper, we introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments. Our approach is based on a manager-worker decomposition of the RL agent, in which a manager maximises rewards from the environment by learning a task-dependent policy over both a set of task-independent discovered-options and primitive actions. The option-reward and termination functions that define a subgoal for each option are parameterised as neural networks and trained via meta-gradients to maximise their usefulness. Empirical analysis on gridworld and DeepMind Lab tasks show that: (1) our approach can discover meaningful and diverse temporally-extended options in multi-task RL domains, (2) the discovered options are frequently used by the agent while learning to solve the training tasks, and (3) that the discovered options help a randomly initialised manager learn faster in completely new tasks.
Efficient exploration is a long-standing problem in sensorimotor learning. Major advances have been demonstrated in noise-free, non-stochastic domains such as video games and simulation. However, most of these formulations either get stuck in environments with stochastic dynamics or are too inefficient to be scalable to real robotics setups. In this paper, we propose a formulation for exploration inspired by the work in active learning literature. Specifically, we train an ensemble of dynamics models and incentivize the agent to explore such that the disagreement of those ensembles is maximized. This allows the agent to learn skills by exploring in a self-supervised manner without any external reward. Notably, we further leverage the disagreement objective to optimize the agents policy in a differentiable manner, without using reinforcement learning, which results in a sample-efficient exploration. We demonstrate the efficacy of this formulation across a variety of benchmark environments including stochastic-Atari, Mujoco and Unity. Finally, we implement our differentiable exploration on a real robot which learns to interact with objects completely from scratch. Project videos and code are at https://pathak22.github.io/exploration-by-disagreement/
105 - Wentao Huang , Kechen Zhang 2016
A framework is presented for unsupervised learning of representations based on infomax principle for large-scale neural populations. We use an asymptotic approximation to the Shannons mutual information for a large neural population to demonstrate that a good initial approximation to the global information-theoretic optimum can be obtained by a hierarchical infomax method. Starting from the initial solution, an efficient algorithm based on gradient descent of the final objective function is proposed to learn representations from the input datasets, and the method works for complete, overcomplete, and undercomplete bases. As confirmed by numerical experiments, our method is robust and highly efficient for extracting salient features from input datasets. Compared with the main existing methods, our algorithm has a distinct advantage in both the training speed and the robustness of unsupervised representation learning. Furthermore, the proposed method is easily extended to the supervised or unsupervised model for training deep structure networks.
Although Shannon theory states that it is asymptotically optimal to separate the source and channel coding as two independent processes, in many practical communication scenarios this decomposition is limited by the finite bit-length and computational power for decoding. Recently, neural joint source-channel coding (NECST) is proposed to sidestep this problem. While it leverages the advancements of amortized inference and deep learning to improve the encoding and decoding process, it still cannot always achieve compelling results in terms of compression and error correction performance due to the limited robustness of its learned coding networks. In this paper, motivated by the inherent connections between neural joint source-channel coding and discrete representation learning, we propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme. More specifically, on the encoder side, we propose to explicitly maximize the mutual information between the codeword and data; while on the decoder side, the amortized reconstruction is regularized within an adversarial framework. Extensive experiments conducted on various real-world datasets evidence that our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
299 - Shariq Iqbal , Fei Sha 2019
Solving tasks with sparse rewards is one of the most important challenges in reinforcement learning. In the single-agent setting, this challenge is addressed by introducing intrinsic rewards that motivate agents to explore unseen regions of their state spaces; however, applying these techniques naively to the multi-agent setting results in agents exploring independently, without any coordination among themselves. Exploration in cooperative multi-agent settings can be accelerated and improved if agents coordinate their exploration. In this paper we introduce a framework for designing intrinsic rewards which consider what other agents have explored such that the agents can coordinate. Then, we develop an approach for learning how to dynamically select between several exploration modalities to maximize extrinsic rewards. Concretely, we formulate the approach as a hierarchical policy where a high-level controller selects among sets of policies trained on diverse intrinsic rewards and the low-level controllers learn the action policies of all agents under these specific rewards. We demonstrate the effectiveness of the proposed approach in cooperative domains with sparse rewards where state-of-the-art methods fail and challenging multi-stage tasks that necessitate changing modes of coordination.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا