Do you want to publish a course? Click here

The Effectiveness of Memory Replay in Large Scale Continual Learning

98   0   0.0 ( 0 )
 Added by Ang Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study continual learning in the large scale setting where tasks in the input sequence are not limited to classification, and the outputs can be of high dimension. Among multiple state-of-the-art methods, we found vanilla experience replay (ER) still very competitive in terms of both performance and scalability, despite its simplicity. However, a degraded performance is observed for ER with small memory. A further visualization of the feature space reveals that the intermediate representation undergoes a distributional drift. While existing methods usually replay only the input-output pairs, we hypothesize that their regularization effect is inadequate for complex deep models and diverse tasks with small replay buffer size. Following this observation, we propose to replay the activation of the intermediate layers in addition to the input-output pairs. Considering that saving raw activation maps can dramatically increase memory and compute cost, we propose the Compressed Activation Replay technique, where compressed representations of layer activation are saved to the replay buffer. We show that this approach can achieve superior regularization effect while adding negligible memory overhead to replay method. Experiments on both the large-scale Taskonomy benchmark with a diverse set of tasks and standard common datasets (Split-CIFAR and Split-miniImageNet) demonstrate the effectiveness of the proposed method.



rate research

Read More

Deep neural networks have shown promise in several domains, and the learned data (task) specific information is implicitly stored in the network parameters. Extraction and utilization of encoded knowledge representations are vital when data is no longer available in the future, especially in a continual learning scenario. In this work, we introduce {em flashcards}, which are visual representations that {em capture} the encoded knowledge of a network as a recursive function of predefined random image patterns. In a continual learning scenario, flashcards help to prevent catastrophic forgetting and consolidating knowledge of all the previous tasks. Flashcards need to be constructed only before learning the subsequent task, and hence, independent of the number of tasks trained before. We demonstrate the efficacy of flashcards in capturing learned knowledge representation (as an alternative to the original dataset) and empirically validate on a variety of continual learning tasks: reconstruction, denoising, task-incremental learning, and new-instance learning classification, using several heterogeneous benchmark datasets. Experimental evidence indicates that: (i) flashcards as a replay strategy is { em task agnostic}, (ii) performs better than generative replay, and (iii) is on par with episodic replay without additional memory overhead.
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity. We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective, without extraneous buffers or generator networks. Instead the implicit memory of learned samples within the assessed model itself is exploited. Furthermore, whereas existing work focuses on reinforcing the full seen data distribution, we show that optimizing for not forgetting calls for the generation of samples that are specialized to each real training batch, which is more efficient and scalable. We consider high-level parallels with the brain, notably the use of a single model for inference and recall, the dependency of recalled samples on the current environment batch, top-down modulation of activations and learning, abstract recall, and the dependency between the degree to which a task is learned and the degree to which it is recalled. These characteristics emerge naturally from the method without being controlled for.
116 - Stella Ho , Ming Liu , Lan Du 2021
Continual learning (CL) refers to a machine learning paradigm that using only a small account of training samples and previously learned knowledge to enhance learning performance. CL models learn tasks from various domains in a sequential manner. The major difficulty in CL is catastrophic forgetting of previously learned tasks, caused by shifts in data distributions. The existing CL models often employ a replay-based approach to diminish catastrophic forgetting. Most CL models stochastically select previously seen samples to retain learned knowledge. However, occupied memory size keeps enlarging along with accumulating learned tasks. Hereby, we propose a memory-efficient CL method. We devise a dynamic prototypes-guided memory replay module, incorporating it into an online meta-learning model. We conduct extensive experiments on text classification and additionally investigate the effect of training set orders on CL model performance. The experimental results testify the superiority of our method in alleviating catastrophic forgetting and enabling efficient knowledge transfer.
Continual learning is the problem of learning new tasks or knowledge while protecting old knowledge and ideally generalizing from old experience to learn new tasks faster. Neural networks trained by stochastic gradient descent often degrade on old tasks when trained successively on new tasks with different data distributions. This phenomenon, referred to as catastrophic forgetting, is considered a major hurdle to learning with non-stationary data or sequences of new tasks, and prevents networks from continually accumulating knowledge and skills. We examine this issue in the context of reinforcement learning, in a setting where an agent is exposed to tasks in a sequence. Unlike most other work, we do not provide an explicit indication to the model of task boundaries, which is the most general circumstance for a learning agent exposed to continuous experience. While various methods to counteract catastrophic forgetting have recently been proposed, we explore a straightforward, general, and seemingly overlooked solution - that of using experience replay buffers for all past events - with a mixture of on- and off-policy learning, leveraging behavioral cloning. We show that this strategy can still learn new tasks quickly yet can substantially reduce catastrophic forgetting in both Atari and DMLab domains, even matching the performance of methods that require task identities. When buffer storage is constrained, we confirm that a simple mechanism for randomly discarding data allows a limited size buffer to perform almost as well as an unbounded one.
Learning a sequence of tasks without access to i.i.d. observations is a widely studied form of continual learning (CL) that remains challenging. In principle, Bayesian learning directly applies to this setting, since recursive and one-off Bayesian updates yield the same result. In practice, however, recursive updating often leads to poor trade-off solutions across tasks because approximate inference is necessary for most models of interest. Here, we describe an alternative Bayesian approach where task-conditioned parameter distributions are continually inferred from data. We offer a practical deep learning implementation of our framework based on probabilistic task-conditioned hypernetworks, an approach we term posterior meta-replay. Experiments on standard benchmarks show that our probabilistic hypernetworks compress sequences of posterior parameter distributions with virtually no forgetting. We obtain considerable performance gains compared to existing Bayesian CL methods, and identify task inference as our major limiting factor. This limitation has several causes that are independent of the considered sequential setting, opening up new avenues for progress in CL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا