Coupling emitters with nanoresonators is an effective strategy to control light emission at the subwavelength scale with high efficiency. Low-loss dielectric nanoantennas hold particular promise for this purpose, owing to their strong Mie resonances. Herein, we explore a highly miniaturized platform for the control of emission based on individual subwavelength Si nanospheres (SiNSs) to modulate the directional excitation and exciton emission of two-dimensional transition metal dichalcogenides (2D TMDs). A modified Mie theory for dipole-sphere hybrid systems is derived to instruct the optimal design for desirable modulation performance. Controllable forward-to-backward intensity ratios are experimentally validated in 532 nm laser excitation and 635 nm exciton emission from a monolayer WS2. Versatile light emission control along all device orientations is achieved for different emitters and excitation wavelengths, benefiting from the facile size control and isotropic shape of SiNSs. Simultaneous modulation of excitation and emission via a single SiNS at visible wavelengths significantly improves the efficiency and directivity of TMD exciton emission and leads to the potential of multifunctional integrated photonics. Overall, our work opens promising opportunities for nanophotonics and polaritonic systems, enabling efficient manipulation, enhancement and reconfigurability of light-matter interactions.